98%
921
2 minutes
20
Homuncular organization, i.e., the neuronal representation of the human body within the primary motor cortex, is one of the most fundamental principles of the human brain. Despite this, in rare peripheral nerve surgery patients, the transformation of a monofunctional (diaphragm activation) into a bifunctional motor area (diaphragm and arm activation is controlled by the same cortical area) has previously been demonstrated. The mechanisms behind this transformation are not fully known. To investigate this transformation of a monofunctional area we investigate functional connectivity changes in a unique and highly instructive pathophysiological patient model. These patients suffer from complete brachial plexus avulsion with arm paralysis and had been treated with reconnection of the end of the musculocutaneous nerve to the side of a fully functional phrenic nerve to regain function. Task-based functional connectivity between the arm representations and the diaphragm (phrenic nerve) representations were examined in six patients and 12 aged matched healthy controls at ultra-high field MRI while they either performed or tried isolated elbow flexion or conducted forced abdominal inspiration. Functional connectivity values are considerably increased between the diseased arm and the bilateral diaphragm areas while trying strong muscle tension in the diseased arm as compared to the healthy arm. This effect was not found as compared to the healthy arm in the patient group. This connectivity was stronger between ipsilateral than between corresponding contralateral brain regions. No corresponding differences were found in healthy subjects. Our data suggests that the increased functional connectivity between the deprived arm area and the diaphragm area drives biceps muscle function. From this findings we infer that this new rehabilitative mechanism in the primary motor cortex may establish new intrahemispheric connections within the brain and the motor cortex in particular to reroute the output of a completely denervated motor area. This study extend current knowledge about neuroplasticity within the motor cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056825 | PMC |
http://dx.doi.org/10.3389/fneur.2020.00125 | DOI Listing |
Magn Reson Lett
May 2025
Department of Medical Imaging, Tianjin First Central Hospital, Tianjin, 300192, China.
Hepatic encephalopathy (HE) is a neurological condition that occurs as a complication of liver dysfunction that involves sensorimotor symptoms in addition to cognitive and behavioral changes, particularly in cases of severe liver disease or cirrhosis. Previous studies have reported spatially distributed structural and functional abnormalities related to HE, but the exact relationship between the structural and functional alterations with respect to disease progression remains unclear. In this study, we performed surface-based cortical thickness comparisons and functional connectivity (FC) analyses between three cross-sectional groups: healthy controls (HC, = 51), patients with minimal hepatic encephalopathy (MHE, = 50), patients with overt hepatic encephalopathy (OHE, = 51).
View Article and Find Full Text PDFNeuroimage Rep
September 2025
School of Psychology, Faculty of Medicine and Health, University of Leeds, LS2 9JT, UK.
Background: Theta Burst Stimulation (TBS) is a form of non-invasive brain stimulation that can induce neuroplastic changes in the underlying intracortical areas. It has significant potential in clinical and research settings for modulating cognitive and motor performance. Little is known about how TBS affects oxygenations levels within and across brain hemispheres during stimulation of the Dorsolateral Prefrontal Cortex (DLPFC).
View Article and Find Full Text PDFFront Behav Neurosci
August 2025
Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Sound influences motor functions and sound perception is conversely modulated by locomotion. Accumulating evidence supports an interconnection between the auditory system and the basal ganglia (BG), which has functional implications on the interaction between the two systems. Substantial evidence now supports auditory cortex and auditory thalamus inputs to the tri-laminar region of the tail of the striatum (tTS) in rodents.
View Article and Find Full Text PDFHum Brain Mapp
September 2025
Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Perinatal stroke is a vascular injury occurring early in life, often resulting in motor deficits (hemiplegic cerebral palsy/HCP). Comorbidities may also include poor neuropsychological outcomes, such as deficits in memory. Previous studies have used resting state functional MRI (fMRI) to demonstrate that functional connectivity (FC) within hippocampal circuits is associated with memory function in typically developing controls (TDC) and in adults after stroke, but this is unexplored in perinatal stroke.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
School of Information and Communication Engineering, North University of China, Taiyuan, China.
Aims: Decoding the motor intention by electroencephalography to control external devices is an effective method of helping spinal cord injury (SCI) patients to regain motor function. Still, SCI patients have much lower accuracy in the decoding of motor intentions compared to healthy individuals, which severely hampers the clinical application. However, the underlying neural mechanisms are still unknown.
View Article and Find Full Text PDF