Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is a valuable ornamental and medicinal plant rich with polysaccharides, alkaloid, and other bioactive compounds, which are potential raw materials for pharmacological utilization. In this study, an efficient protocol for the rapid propagation of was developed. By using the tissue culture protocol, the effects of pH, hormone combinations, temperatures, light intensity, culture time protocorm proliferation, seedlings rooting, and accumulation of biomass with bioactive compounds were investigated. The experiments showed that the medium [1/2 MS + activated carbon1.0 g/L+ agar strip 7.5 g/L + sucrose 25 g/L] effectively promoted the germination of seeds. The optimal culture conditions were found at pH 5.7, temperature 23 ± 2°C, and light intensity of 1000 Lx in the protocorm proliferation stage. Adding 1.5 g/L peptone in the medium effectively promoted the seedling rooting. The optimal culture conditions for accumulation of bioactive compounds (polysaccharides and alkaloids) of seedlings were found at temperature of 25 ± 2°C, light intensity of 1500-2000 Lx after the 60-day (d). Our study constructed a rapid propagation system in vitro for , as well as the methods for efficient accumulation of active substances in seedling culture, which will serve as guidance for industrial production of seedlings for both medicinal raw materials and ornamental plants. In addition, our study provided a new idea that we can directly use the high bioactive compound seedlings to extract medicinal components in industry conditions without transferring to the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161565PMC
http://dx.doi.org/10.1080/21655979.2020.1739406DOI Listing

Publication Analysis

Top Keywords

rapid propagation
12
bioactive compounds
12
light intensity
12
accumulation active
8
active substances
8
raw materials
8
protocorm proliferation
8
effectively promoted
8
optimal culture
8
culture conditions
8

Similar Publications

This case study reports the first documented use of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) to treat refractory status epilepticus (RSE). A 33-year-old woman with drug-resistant epilepsy and recurrent RSE underwent SEEG to define her epileptogenic zone. A new RSE started shortly before and continued during the SEEG exploration, being unresponsive to multiple antiseizure medications, vagal nerve stimulation, and corticosteroid therapy.

View Article and Find Full Text PDF

Patterns and Processes of Genomic Evolution Inferred From the Ten Smallest Vertebrate Genomes.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.

Pufferfish exhibit the smallest vertebrate genomes, making them ideal models for investigating evolutionary patterns and processes that affect genome size. While the Takifugu rubripes genome was fully sequenced two decades ago, key evolutionary drivers remain elusive. We sequenced 10 pufferfish genomes and generated 35 transcriptomes and 13 methylomes to understand genomic evolutionary mechanisms.

View Article and Find Full Text PDF

Early boosting of p38 MAPK signaling pathway by lycorine hydrochloride potently inhibits PRRSV proliferation in primary and established cells.

Front Microbiol

August 2025

Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous economic losses in the swine industry since emerging in the late 1980s. Although vaccination has been widely used to control PRRS epidemics in Chinese pig farms, they provided limited protection against PRRSV transmission; moreover, no effective therapeutic drugs are available. Therefore, there is an urgent need to develop novel antiviral strategies to control PRRSV epidemics.

View Article and Find Full Text PDF

Understanding human-virus protein-protein interactions is critical for studying molecular mechanisms driving viral infection, immune evasion, and propagation, thereby informing strategies for public health. Here, we introduce a novel multimodal deep learning framework that integrates high-confidence experimental datasets to systematically predict putative interactions between human and viral proteins. Our approach incorporates two complementary tasks: binary classification for interaction prediction and conditional sequence generation to identify interacting protein partners.

View Article and Find Full Text PDF

High-resolution DIC analysis of in situ strain and crack propagation in coated AZ31 magnesium alloys under mechanical loading.

J Mater Sci

August 2025

Faculty of Science and Health, School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT UK.

Unlabelled: Biodegradable magnesium (Mg) alloys are promising for various biomedical applications but their susceptibility to corrosion poses significant challenges. This study systematically examines the microstructural integrity and failure mechanisms of electrochemically deposited phosphate- and fluorine-rich coatings on AZ31 Mg alloy subjected to three-point bending (3 PB) in both non-corrosive and physiological (HBSS) environments. High-resolution digital image correlation (HR-DIC) combined with scanning electron microscopy (SEM) enables in situ visualization and quantitative analysis of crack initiation, evolution, and propagation within the coatings.

View Article and Find Full Text PDF