Mapping Connectome in Mammalian Brain: A Novel Approach by Bioengineering Neuro-Glia specific Vectors.

J Theor Biol

Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India. Electronic address:

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The connectome is the comprehensive map of the brain represented by wiring diagram of the full set of neuro-glia and synapses within entire brain of an organism. Some recent scientific efforts have successfully been made to visualize such map at neuro-glial networking level, however, capturing it as one unit of the entire brain have never been elucidated. Moreover, in order to derive structure-function relationship of different brain regions in response to a defined stimulus, there is a need to elucidate the connectome at single neuro-glial ensemble level after brain is challenged with the known memory function. This needs developing molecular approaches to tag neuro-glial activities in response to a conditioned brain function. Such approaches of using specific molecular tags have been tried to visualize independently neuron and glial specific events in response to a memory function, however, they could not tag the connectome together at single neuro-glia ensemble level. Therefore, there is a need to develop new methods for mapping entire connectome up to a single neuro-glial precision and resolution, with a purpose of tagging specific brain region accountable to execute a special memory formation process. The present hypothetical paper aims to propose a novel molecular method to generate the structural connectome at neuro-glial level in mice brain. Herein, we propose to tag the entire connectome at neuro-glia precision by generating a transgenic mice via transposing and recombining engineered novel "Neuro-Glia specific Vectors" (NGVs: specific to excitatory neurons, inhibitory neurons and glial cells) vis a vis "Transcriptional/ Translational Messenger (TMs: specific to metalloproteinases, MMP-9) coupled with different color protein tags, followed by the Clarity. Herein, the NGVs will be translated via Neuro-glia specific promoters, while TMs will be translated via endogenous MMP-9 promoter in all neuro-glial cells. The viability of all constructs will be verified in cortical/ hippocampal culture by inducing them to undergo chemically induced long term potentionation (cLTP) following visualization of different colored pattern. This will be further confirmed by Immunostaning, Western Blot and RT-PCR analysis. Additionally, in this approach, one can decipher the dynamics of molecular and cellular events associated with MMP-9 seretome by monitoring the trafficking of tagged endogenous MMP-9 protein after neuronal stimulation by cLTP in vitro. However, for visualizing complete connectome, the adult transgenic mice will be challenged with fear consolidation (Fear context and contextual cue) tests followed by Clarity coupled Light Sheet Microscopy to analyze neuro-glia ensemble following whole brain imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2020.110244DOI Listing

Publication Analysis

Top Keywords

connectome single
12
brain
10
specific
8
neuro-glia specific
8
entire brain
8
single neuro-glial
8
ensemble level
8
memory function
8
neuro-glia ensemble
8
entire connectome
8

Similar Publications

This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.

View Article and Find Full Text PDF

The study of individual differences in healthy controls can provide precise descriptions of individual brain activity. Following this direction, researchers have tried to identify a subject using their functional connectivity (FC) patterns computed by functional magnetic resonance imaging (fMRI) data of the brain. Currently, there is an emerging focus on investigating the identifiability over the temporal variability of the FC.

View Article and Find Full Text PDF

Early adversity is a well-established risk factor for psychopathology in youth. Contemporary taxonomies of adversity seek to distill the diverse stressors children face into meaningful categories of experience to enable more precise prediction of risk; however, few studies have tested these models using data-driven approaches in well-characterized, longitudinal samples. Here, we examined the latent structure of early stress across diverse domains of exposure, tested differential associations with psychopathology in adolescence, and investigated frontolimbic functional connectivity as a potential mediator.

View Article and Find Full Text PDF

Reconstruction of a connectome of single neurons in mouse brains by cross-validating multi-scale multi-modality data.

Nat Methods

August 2025

New Cornerstone Science Laboratory, Institute for Brain and Intelligence, Fudan University, Shanghai, China.

Brain networks, or connectomes, have inspired research at macro-, meso- and micro-scales. However, the rise of single-cell technologies necessitates inferring connectomes consisting of individual neurons projecting throughout the brain. Her, we present a scalable approach to map single-neuron connectivity at the whole-brain scale using two complementary methods.

View Article and Find Full Text PDF

Brain functional connectivity (FC), the temporal synchrony between brain networks, is essential to understand the functional organization of the brain and to identify changes due to neurological disorders, development, treatment, and other phenomena. Independent component analysis (ICA) is a matrix decomposition method used extensively for simultaneous estimation of functional brain topography and connectivity. However, estimation of FC via ICA is often sub-optimal due to the use of ad hoc estimation methods or temporal dimension reduction prior to ICA.

View Article and Find Full Text PDF