98%
921
2 minutes
20
Quantum spin liquids (QSLs) form an extremely unusual magnetic state in which the spins are highly correlated and fluctuate coherently down to the lowest temperatures, but without symmetry breaking and without the formation of any static long-range-ordered magnetism. Such intriguing phenomena are not only of great fundamental relevance in themselves, but also hold promise for quantum computing and quantum information. Among different types of QSLs, the exactly solvable Kitaev model is attracting much attention, with most proposed candidate materials, e.g., RuCl_{3} and Na_{2}IrO_{3}, having an effective S=1/2 spin value. Here, via extensive first-principles-based simulations, we report the investigation of the Kitaev physics and possible Kitaev QSL state in epitaxially strained Cr-based monolayers, such as CrSiTe_{3}, that rather possess a S=3/2 spin value. Our study thus extends the playground of Kitaev physics and QSLs to 3d transition metal compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.087205 | DOI Listing |
J Am Chem Soc
September 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. This framework streamlines the development of new interfaces by providing a reusable and extendable code base. It supports the computation of energies, gradients, various couplings─like spin-orbit couplings, nonadiabatic couplings, and transition dipole moments─and other properties for an arbitrary number of states with any multiplicities and charges.
View Article and Find Full Text PDFNano Lett
September 2025
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
Planar Josephson junctions (JJs) based on InSb nanoflags have recently emerged as an intriguing platform in superconducting electronics. The knowledge of the current-phase relationship (CPR) of such hybrid junctions is crucial for their applications. This letter presents the fabrication and investigation of superconducting quantum interference devices (SQUIDs) employing InSb nanoflag JJs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
Reverse intersystem crossing (RISC) process is critical for thermally activated delayed fluorescence (TADF) materials to realize spin-flip of triplet excitons in organic light-emitting diodes (OLEDs), but the RISC processes of most TADF materials are not fast enough, undermining electroluminescence (EL) efficiency stability and operational lifetime. Herein, a symmetry breaking strategy to accelerate RISC processes is proposed. By designing asymmetric electron-withdrawing backbone consisting of benzonitrile and xanthone/thioxanthone groups, two new asymmetric TADF molecules, 4tCzCN-pXT and 4tCzCN-pTXT, with multiple 3,6-di-tert-butylcarbazole donors are successfully developed.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
August 2025
School of Chemistry, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel. Electronic address:
Geopolymers are aluminosilicate materials that exhibit effective immobilization properties for low-level radioactive nuclear waste, and more specifically for the immobilization of radioactive cesium. The identification of the cesium-binding sites and their distribution between the different phases making up the geopolymeric matrix can be obtained using solid-state NMR measurements of the quadrupolar spin Cs, which is a surrogate for the radioactive cesium species present in nuclear waste streams. For quadrupolar nuclei, acquiring two-dimensional multiple-quantum experiments allows the acquisition of more dispersed spectra when multiple sites overlap.
View Article and Find Full Text PDF