Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumors that overexpress the MYC oncogene are frequently aneuploid, a state associated with highly aggressive cancers and tumor evolution. However, how MYC causes aneuploidy is not well understood. Here, we show that MYC overexpression induces mitotic spindle assembly defects and chromosomal instability (CIN) through effects on microtubule nucleation and organization. Attenuating MYC expression reverses mitotic defects, even in established tumor cell lines, indicating an ongoing role for MYC in CIN. MYC reprograms mitotic gene expression, and we identify TPX2 to be permissive for spindle assembly in MYC-high cells. TPX2 depletion blocks mitotic progression, induces cell death, and prevents tumor growth. Further elevating TPX2 expression reduces mitotic defects in MYC-high cells. MYC and TPX2 expression may be useful biomarkers to stratify patients for anti-mitotic therapies. Our studies implicate MYC as a regulator of mitosis and suggest that blocking MYC activity can attenuate the emergence of CIN and tumor evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085414PMC
http://dx.doi.org/10.1016/j.celrep.2020.02.041DOI Listing

Publication Analysis

Top Keywords

myc
10
tumor evolution
8
spindle assembly
8
mitotic defects
8
myc-high cells
8
tpx2 expression
8
mitotic
5
myc dysregulates
4
dysregulates mitosis
4
mitosis revealing
4

Similar Publications

Mature mRNAs are generated by spliceosomes that recruit factors to aid RNA splicing in which introns are removed and exons joined. Among the splicing factors, a family of proteins contain a homologous U2 Auxiliary Factor (U2AF) Homology Motif (UHM) to bind with factors containing U2AF ligand motifs (ULM) and recruit them to regulate 3' splice site selection. Mutations and overexpression of UHM splicing factors are frequently found in cancers.

View Article and Find Full Text PDF

RELA Ablation Contributes to Progression of Hepatocellular Carcinoma with TP53 Mutation and is a Potential Therapeutic Target.

Adv Sci (Weinh)

September 2025

China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Resea

TP53 mutations are highly associated with hepatocellular carcinoma (HCC), a common and deadly cancer. However, few primary drivers in the progression of HCC with mutant TP53 have been identified. To uncover tumor suppressors in human HCC, a genome-wide CRISPR/Cas9-based screening of primary human hepatocytes with MYC and TP53 overexpression (MT-PHHs) is performed in xenografts.

View Article and Find Full Text PDF

Snai2 is a transcription factor that inhibits the proliferation of cervical cancer cells and tumor growth. The expression of Snai2 inhibited the expression of β-catenin and impaired Wnt/β-catenin signaling pathway activity. The results of the RNA sequence in Snai2-overexpressing cervical cancer cells implied a strong correlation between Snai2 and TRIM31 with ubiquitin ligase activity.

View Article and Find Full Text PDF

Unexpected Diagnosis in a Cutaneous Tumoral Lesion: Primary Cutaneous Leg-Type B-Cell Lymphoma.

Cureus

August 2025

Dermatology, Centro Medico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, MEX.

Primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL-LT), is an uncommon and aggressive subtype of cutaneous B-cell lymphoma, typically affecting elderly women and predominantly involving the lower extremities. Its diagnosis relies on immunohistochemical profiling and clinical presentation. We report a rare case of a 45-year-old male presenting initially with scalp and supraciliary plaques.

View Article and Find Full Text PDF

This review comprehensively summarizes the current understanding of ubiquitin-specific protease 30 (USP30), covering its structural characteristics, functions in cellular processes, associations with diseases, diagnostic and therapeutic strategies, as well as controversies and future perspectives. USP30, a deubiquitinating enzyme, plays crucial roles in mitochondrial quality control, autophagy regulation, and cellular homeostasis. It is implicated in the progression of several malignancies, including hepatocellular carcinoma, breast carcinoma, and glioblastoma, as well as neurodegenerative disorders such as Parkinson's disease.

View Article and Find Full Text PDF