98%
921
2 minutes
20
It is now well-recognized that the tumor microenvironment (TME) is not only a key regulator of cancer progression but also plays a crucial role in cancer treatment responses. Recently, several high-profile publications have demonstrated the importance of particular immune parameters and cell types that dictate responsiveness to immunotherapies. With this increased understanding of TME-mediated therapy, approaches that increase therapeutic efficacy by remodeling the TME are actively being pursued. A classic example of this, in practice by urologists for over 40 years, is the manipulation of the bladder microenvironment for the treatment of non-muscle invasive bladder cancer (NMIBC) by instillation of intravesical bacillus Calmette-Guerin (BCG). The success of BCG treatment is thought to be due to its ability to induce a massive influx of Th1-polarized inflammatory cells, production of Th1 inflammatory cytokines and the generation of tumor-targeted Th1-mediated cytotoxic responses. Whilst BCG immunotherapy is currently the best treatment for NMIBC, ~30% of patients show no response to this treatment. Here we present a review highlighting a variety of promising alternative immunotherapies being developed that remodel the bladder tumor microenvironment. These include (1) the use of oncolytic viruses which selectively replicate within cancer cells whilst also modifying the immunological components of the TME, (2) manipulation of the bladder microbiome to augment the response to BCG or other immunotherapies (3) utilizing Toll-like Receptor agonists as anti-tumor agents due to their potent stimulation of innate and adaptive immunity and (4) the growing recognition that immunotherapeutic strategies that will have the largest impact on patients may require multiple therapeutic approaches combined together. The accumulating knowledge on TME remodeling holds promise for providing an alternative therapy for patients with BCG-unresponsive NMIBC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040074 | PMC |
http://dx.doi.org/10.3389/fonc.2020.00175 | DOI Listing |
Ther Adv Urol
September 2025
Department of Urology, Peking University People's Hospital, 11 Xizhimen South Street, Haidian District, Beijing 100044, China.
Objective: Many studies have stressed the necessity of repeat transurethral resection (reTURB) following the initial conventional transurethral resection of the bladder for non-muscle invasive bladder cancer (NMIBC) patients. However, there have been few studies focusing on the role of reTURB after en bloc resection of bladder tumor (ERBT) for NMIBC by far. This study aimed to evaluate whether reTURB can be avoided after ERBT.
View Article and Find Full Text PDFCurr Med Imaging
May 2025
Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
Background: Predicting the recurrence risk of NMIBC after TURBT is crucial for individualized clinical treatment.
Objective: The objective of this study is to evaluate the ability of radiomic feature analysis of intratumoral and peritumoral regions based on computed tomography (CT) imaging to predict recurrence in non-muscle-invasive bladder cancer (NMIBC) patients who underwent transurethral resection of bladder tumor (TURBT).
Methods: A total of 233 patients with NMIBC who underwent TURBT were retrospectively analyzed.
Int J Cancer
September 2025
Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
Bladder cancer (BlCa) exhibits a highly heterogeneous molecular landscape and treatment response, underlining the pressing need for personalized prognosis. N6-methyladenosine (m6A) constitutes the most abundant RNA modification, modulates RNA biology/metabolism, and maintains cellular homeostasis, with its dysregulation involved in cancer initiation and progression. Herein, we evaluated the clinical value of METTL3 m6A methyltransferase, the main catalytic component of m6A methylation machinery, in improving BlCa patients' risk stratification and prognosis.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Ultrasonic Imaging, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China.
Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring.
View Article and Find Full Text PDF