Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To study the gene expression of cardiac mesenchymal cells in patients with type 2 diabetes mellitus (T2DM)based on a whole-genome high-throughput sequencing dataset,screen differentially expressed genes,analyze the genetics signature of cardiac mesenchymal cells in T2DM patients by bioinformatics analysis,and explore the environmental chemicals related to the key differentially expressed genes. The dataset GSE106177 was obtained from Gene Expression Omnibus (GEO) database.The dataset was pre-processed and analyzed by Network Analyst,Cytoscape 3.7.1,String11.0,CTD,and HMDD for screening for differentially expressed genes,enrichment analysis,establishment of protein-protein interaction (PPI) networks,and screening for relevant environmental chemicals. The gene expression pattern of cardiac mesenchymal cells in T2DM patients was significantly different from that in the control group.There were 135 differentially expressed genes,of which 58 (42.96%) were up-regulated and 77 (57.04%) were down-regulated.The differentially expressed genes mainly participated in biological processes such as multicellular organism development,anatomical structure development,and system development and were mainly involved in hepatocellular carcinoma,Cushing's syndrome,and cholesterol metabolism.PPI network showed that UBC was the core protein node.The microRNA-Gene interaction network showed that seven microRNAs,represented by hsa-mir-8485,interacted with the differentially expressed genes.Key T2DM related genes such as UBC,DNER,and CNTN1 interacted with bisphenol A. The gene expression profile of cardiac mesenchymal cells markedly changes in T2DM patients,during which UBC may play an important biological role.Bisphenol A exposure may also affect the development and normal function of cardiac cells in T2DM patients.

Download full-text PDF

Source
http://dx.doi.org/10.3881/j.issn.1000-503X.11497DOI Listing

Publication Analysis

Top Keywords

differentially expressed
24
gene expression
20
cardiac mesenchymal
20
mesenchymal cells
20
cells t2dm
12
t2dm patients
12
expression profile
8
profile cardiac
8
cells patients
8
patients type
8

Similar Publications

Deciphering the molecular landscape of acute myeloid leukemia initiation and relapse: a systems biology approach.

Med Oncol

September 2025

Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.

View Article and Find Full Text PDF

Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.

Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.

View Article and Find Full Text PDF

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF

Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.

View Article and Find Full Text PDF

Objective: To analyze the filum terminale (FT) of children with tethered cord syndrome (TCS) and aborted fetuses without neurological disorders in order to investigate the expression of significantly differentially expressed proteins in the FT under both pathological and physiological conditions.

Methods: According to the inclusion and exclusion criteria, 35 FT samples were selected, and the samples were subjected to immunohistochemistry and H&E staining. The data were analyzed using one-way analysis of variance, and P < 0.

View Article and Find Full Text PDF