Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is well established that the adult brain contains a mosaic of domain-specific networks. But how do these domain-specific networks develop? Here we tested the hypothesis that the brain comes prewired with connections that precede the development of domain-specific function. Using resting-state fMRI in the youngest sample of newborn humans tested to date, we indeed found that cortical networks that will later develop strong face selectivity (including the "proto" occipital face area and fusiform face area) and scene selectivity (including the "proto" parahippocampal place area and retrosplenial complex) by adulthood, already show domain-specific patterns of functional connectivity as early as 27 d of age (beginning as early as 6 d of age). Furthermore, we asked how these networks are functionally connected to early visual cortex and found that the proto face network shows biased functional connectivity with foveal V1, while the proto scene network shows biased functional connectivity with peripheral V1. Given that faces are almost always experienced at the fovea, while scenes always extend across the entire periphery, these differential inputs may serve to facilitate domain-specific processing in each network after that function develops, or even guide the development of domain-specific function in each network in the first place. Taken together, these findings reveal domain-specific and eccentricity-biased connectivity in the earliest days of life, placing new constraints on our understanding of the origins of domain-specific cortical networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084100PMC
http://dx.doi.org/10.1073/pnas.1911359117DOI Listing

Publication Analysis

Top Keywords

functional connectivity
12
domain-specific
8
domain-specific networks
8
development domain-specific
8
domain-specific function
8
cortical networks
8
selectivity including
8
including "proto"
8
face area
8
early age
8

Similar Publications

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF

Dysregulated dopaminergic signaling has been implicated in the pathophysiology of major depressive disorder (MDD) and childhood sexual abuse (CSA), but inconsistencies abound. In a multimodal PET-functional MRI study, harnessing the highly selective tracer [C]altropane, we investigated dopamine transporter availability (DAT) and resting-state functional connectivity (rsFC) within reward-related regions among 112 unmedicated individuals (MDD: n = 37, MDD/CSA: n = 18; CSA no MDD: n = 14; controls: n = 43). Striatal DAT and seed-based rsFC were assessed in the dorsal and ventral striatum and the ventral tegmental area.

View Article and Find Full Text PDF

Cognitive decline is common in multiple sclerosis (MS), although neural mechanisms are not fully understood. The objective was to investigate the impact of mild cognitive impairment (MCI) on the relationship between resting state functional connectivity (RSFC) and cognitive function in older adults with multiple sclerosis (OAMS) and age matched healthy controls. Participants underwent magnetic resonance imaging (MRI) scans and cognitive assessments.

View Article and Find Full Text PDF

Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.

View Article and Find Full Text PDF

Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.

View Article and Find Full Text PDF