98%
921
2 minutes
20
Motivation: Many methods for microbial protein subcellular localization (SCL) prediction exist; however, none is readily available for analysis of metagenomic sequence data, despite growing interest from researchers studying microbial communities in humans, agri-food relevant organisms and in other environments (e.g. for identification of cell-surface biomarkers for rapid protein-based diagnostic tests). We wished to also identify new markers of water quality from freshwater samples collected from pristine versus pollution-impacted watersheds.
Results: We report PSORTm, the first bioinformatics tool designed for prediction of diverse bacterial and archaeal protein SCL from metagenomics data. PSORTm incorporates components of PSORTb, one of the most precise and widely used protein SCL predictors, with an automated classification by cell envelope. An evaluation using 5-fold cross-validation with in silico-fragmented sequences with known localization showed that PSORTm maintains PSORTb's high precision, while sensitivity increases proportionately with metagenomic sequence fragment length. PSORTm's read-based analysis was similar to PSORTb-based analysis of metagenome-assembled genomes (MAGs); however, the latter requires non-trivial manual classification of each MAG by cell envelope, and cannot make use of unassembled sequences. Analysis of the watershed samples revealed the importance of normalization and identified potential biomarkers of water quality. This method should be useful for examining a wide range of microbial communities, including human microbiomes, and other microbiomes of medical, environmental or industrial importance.
Availability And Implementation: Documentation, source code and docker containers are available for running PSORTm locally at https://www.psort.org/psortm/ (freely available, open-source software under GNU General Public License Version 3).
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214030 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btaa136 | DOI Listing |
Mar Life Sci Technol
August 2025
State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.
Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.
View Article and Find Full Text PDFAnaerobic methanotrophic archaea (ANME) are crucial to planetary carbon cycling. They oxidise methane in anoxic niches by transferring electrons to nitrate, metal oxides, or sulfate-reducing bacteria. No ANMEs have been isolated, hampering the biochemical investigation of anaerobic methane oxidation.
View Article and Find Full Text PDFPLoS One
September 2025
Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America.
Using environmental DNA (eDNA)-based tools, we examined sediments underlying a ~ 1.25 hectare commercial kelp farm in the Gulf of Maine growing sugar kelp (Saccharina latissima) for two farming seasons, post-harvest. Two eDNA methods were used: a newly designed S.
View Article and Find Full Text PDFJ Appl Microbiol
September 2025
Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
Aims: Phytoremediation is an effective method of remediating soils contaminated with heavy metals. However, it has some limitations in practical applications with regard to rare plant species, poor environmental adaptability, and long growth cycles. The dynamic response mechanisms of soil microbial communities during phytoremediation are still unclear, which restricts the optimization and promotion of this approach.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; State Key Laboratory of Green and Efficient Development of
Microplastics (MPs) have been shown to enhance nitrous oxide (NO) emissions and soil salinization potentially amplifying this effect. This study investigated the individual and combined impacts of polyethylene (PE) MPs and salinity on NO emissions from paddy soils, while simultaneously analyzing related microbial parameters. MPs significantly increased cumulative NO emissions by 9.
View Article and Find Full Text PDF