98%
921
2 minutes
20
Molecular hydrogen is a major high-energy carrier for future energy technologies, if produced from renewable electrical energy. Hydrogenase enzymes offer a pathway for bioelectrochemically producing hydrogen that is advantageous over traditional platforms for hydrogen production because of low overpotentials and ambient operating temperature and pressure. However, electron delivery from the electrode surface to the enzyme's active site is often rate-limiting. Here, it is shown that three different hydrogenases from Clostridium pasteurianum and Methanococcus maripaludis, when immobilized at a cathode in a cobaltocene-functionalized polyallylamine (Cc-PAA) redox polymer, mediate rapid and efficient hydrogen evolution. Furthermore, it is shown that Cc-PAA-mediated hydrogenases can operate at high faradaic efficiency (80-100 %) and low apparent overpotential (-0.578 to -0.593 V vs. SHE). Specific activities of these hydrogenases in the electrosynthetic Cc-PAA assay were comparable to their respective activities in traditional methyl viologen assays, indicating that Cc-PAA mediates electron transfer at high rates, to most of the embedded enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202000750 | DOI Listing |
Langmuir
September 2025
College of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
The oxygen evolution reaction (OER), a critical yet kinetically sluggish process in electrochemical water splitting, severely limits efficient hydrogen production. Herein, a simple one-step dynamic hydrogen bubble templated electrodeposition technique is used to prepare a self-supported 3D porous NiCuFeP catalyst with outstanding OER performance. In 1.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City 70000, Viet Nam.
We herein construct the Ce-O-Ti interface bridge in the CeO/N-TiCT heterojunction through an ultrasonic-assisted hydrothermal route as an efficient Pt-free hydrogen evolution electrocatalyst. The synergistic contribution of the heterogeneous Ce-O-Ti bridge and oxygen vacancies boosts the water dissociation and thus drastically reduces energy barriers of the hydrogen evolution reaction (HER). The optimal CeO/N-TiCT material requires only a small overpotential (51.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, China; Institute of Chemistry, Chinese Academy of Scien
Inspired by "the composition of catechol and amine groups in the adhesive proteins" of marine mussel and "brick-and-mortar" structure of nacre, we use polydopamine (PDA) as "mortar", graphene oxides (GO) nanosheets as "brick", and Pd ions as interfacial reinforcer, to fabricate nacre-like Pd enhanced PDA functionalized GO membranes (Pd@PDA/GO) with vacuum filtration-assisted assembly method. Meanwhile, in situ reduced Pd nanoclusters by PDA chains were well constrained within the resultant Pd@PDA/GO artificial nacre composites. Good interfacial adhesion with dense packing of the GO nanosheets was further confirmed with sub-nano level microstructure characterization by positron annihilation lifetime spectroscopy.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Strategic Research Center for Smart Battery, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea. Electronic address:
Advancing impactful, economical, and durable Co-based bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been crucial in developing sustainable energy technologies. In this work, Co and CoN nanoparticles (NPs)-incorporated S, N-doped carbon catalysts (Co/CoN/SNC) were prepared via direct pyrolysis of the CoDATT complex, exhibiting high bifunctional electrocatalytic performance for ORR and OER. The complex precursor, CoDATT, was synthesized for the first time using diaminoterthiophene (DATT) and CoCl.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.
Urea electrolysis holds tremendous promise to remediate urea-containing wastewater and produce cost-effective hydrogen. Achieving highly efficient and durable electrocatalysts to drive the anodic urea oxidation reaction (UOR) is paramount to promote its practical applications. Herein, electroless deposition, a scalable, cost-effective, and energy-saving approach, is used to obtain amorphous Ni-Co-P nanoparticles.
View Article and Find Full Text PDF