98%
921
2 minutes
20
Our knowledge of the pathophysiology of heart failure (HF) underwent profound changes during the 1980s. Once thought to be of exclusively structural origin, HF began to be seen as the consequence of hormonal imbalance. A number of seminal studies were published in that decade focusing on the impact of neurohormonal activation in HF. Presently, eight neurohormonal systems are known to have a key role in HF development: four stimulate vasoconstriction and sodium/water retention (the sympathetic nervous system, the renin-angiotensin-aldosterone system [RAAS], endothelin, and the vasopressin-arginine system), while the other four stimulate vasodilation and natriuresis (the prostaglandin system, nitric oxide, the dopaminergic system, and the natriuretic peptide system [NPS]). These systems are strongly interconnected and are subject to intricate regulation, functioning together in a delicate homeostasis. Disruption of this homeostasis is characteristic of HF. This review explores the historical development of knowledge on the impact of the neurohormonal systems on HF pathophysiology, from the first studies to current understanding. In addition, the therapeutic potential of each of these systems is discussed, and currently used neurohormonal antagonists are characterized. Special emphasis is given to the latest drug approved for use in HF with reduced ejection fraction, sacubitril/valsartan. This drug combines two different molecules, acting on two different systems (RAAS and NPS) simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.repc.2019.05.008 | DOI Listing |
J Biomed Mater Res B Appl Biomater
September 2025
Contipro a.s., Czech Republic.
Drug delivery to the central nervous system (CNS) is primarily hindered by the blood-brain barrier (BBB). To address this, mucoadhesive formulations have been designed to prolong residence time at the application site. In this study, we comprehensively characterized the physicochemical and mucoadhesive properties of hyaluronic acid tyramine (HATA) photocrosslinked hydrogels using rheological methods, nanoindentation, contact angle goniometry, and advanced confocal microscopy.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:
Given the widespread presence of imidacloprid in aquatic environments and the limited research on its impact on amphibian renal health, in this study, we investigated the effects of this commonly used neonicotinoid insecticide on kidney function and molecular mechanisms in Xenopus laevis. Employing a 28-day exposure model, histopathological changes and enzymatic responses induced by two concentrations of imidacloprid were examined, along with gene expression alterations and metabolic disruptions at environmentally relevant levels. The results highlighted significant renal histopathological damage and changes in key enzymes involved in oxidative stress and neurotoxicity, such as superoxide dismutase, glutathione S-transferase, and acetylcholinesterase.
View Article and Find Full Text PDFAgeing Res Rev
September 2025
Institute for Cerebrovascular and Neuroregeneration Research (ICNR), Department of Neurology, LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103, USA. Electronic address:
Perioperative neurocognitive disorders (PNDs) are common complications following surgery, especially in elderly patients, and are characterized by memory loss, attention deficits, and impaired executive function. The pathogenesis of PNDs involves a complex interplay of neuroinflammation, neurotransmitter imbalance, epigenetic modifications, and gut-brain axis disruption. This review summarizes the latest findings on the mechanisms underlying PNDs, with a focus on microglial activation, interleukin imbalance, and NLRP3 inflammasome-mediated pyroptosis.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, E. Orabona St., 70125 Bari, Italy.
Direct printing of pharmaceutical powders allows the creation of personalized paediatric dosage forms, such as orodispersible films (ODFs). In this study, we present an optimized protocol to prepare midazolam (MDZ)/γ-cyclodextrin (γ-CD) inclusion complex-loaded ODFs using the innovative direct powder extrusion 3D printing technique (DPE). ODFs were formulated with a polymer blend consisting of polyethylene oxide and hydroxypropyl methylcellulose, in the presence or without γ-CD.
View Article and Find Full Text PDFLife Sci
September 2025
Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India. Electronic address:
Cardiorenal syndrome (CRS) is a bidirectional relationship shared between the heart and kidneys, both in physiological and pathophysiological perspectives. The metabolic, hemodynamic, and neurohormonal alterations between the heart and kidneys drive this dual-organ damage and are responsible for one of the highest medical concerns around the globe. From a pathophysiological perspective, activation of the renin-angiotensin system, persistent inflammation, oxidative stress, and reactive fibrosis are accountable for the damage to the heart and kidneys.
View Article and Find Full Text PDF