Quick and repeatable shear modulus measurement based on torsional resonance using a piezoelectric torsional transducer.

Ultrasonics

LTCS and College of Engineering, Peking University, Beijing 100871, China; Center for Applied Physics and Technology, Peking University, Beijing, China; Beijing Key Laboratory of Magnetoelectric Materials and Devices, Peking University, Beijing, China. Electronic address:

Published: April 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Shear modulus is one of the fundamental mechanical properties of materials, while its quick and accurate measurement is still a challenge. Here we proposed a method for shear modulus measurement based on torsional resonance using a piezoelectric torsional transducer bonded on a cylindrical specimen. Firstly, the torsional transducer was introduced which consists of two thickness poled, thickness shear (d) piezoelectric half-rings. Secondly, the equivalent circuit of the transducer-cylindrical specimen system is derived and the shear modulus can be explicitly obtained using the torsional resonance frequency. The internal friction can also be obtained, which is calculated by using an approximate formula. Then, shear modulus and internal friction measurement on four materials including 1045 steel, 6061 aluminum, quartz glass and PMMA were conducted. Results indicate that all the measured shear moduli are consistent with the reference values in literatures. The repeatable error in shear modulus measurement is within 0.2%, which is very desirable. Finally, shear modulus measurement scheme under high (or low) temperature is proposed using a frequency-match quartz glass bar as the thermal insulator. Measurement results on the 6061 aluminum indicates that from room temperature to 500 °C, the shear modulus decreases from 26.8 GPa to 16.6GPa. The proposed method is very reliable and quite convenient, which can be widely used in near future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2020.106101DOI Listing

Publication Analysis

Top Keywords

shear modulus
32
modulus measurement
16
torsional resonance
12
torsional transducer
12
shear
10
modulus
8
measurement based
8
based torsional
8
resonance piezoelectric
8
piezoelectric torsional
8

Similar Publications

Effect of pH and Particle Charge on the Interfacial Properties of Biocatalytic Pickering Emulsions─Where Are the Enzymes Located?

Langmuir

September 2025

Process Engineering in Life Science Engineering, HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany.

Pickering emulsions (PEs), where water-in-oil (w/o) droplets are stabilized by nanoparticles (NPs), offer a promising platform for biocatalysis by providing a large interfacial area crucial for efficient substrate conversion. While several lipase catalyzed reactions in PEs have been demonstrated, the exact interfacial structure is unknown. This study focuses on the interfacial network formed by NPs and lipase (CRL) at the octanol/water-interface by varying pH and NP charge.

View Article and Find Full Text PDF

Alterations in skeletal muscle morphology and composition are critical factors in cerebral palsy (CP), including changes in passive stiffness and in belly and fascicle lengths. In this study, we quantified the relative contributions of muscle and tendon to passive stiffness across the ankle range of motion in individuals with CP and typically developing (TD) peers. We also investigated morphological factors underlying increased muscle stiffness.

View Article and Find Full Text PDF

The effect of shape and size of embolic agents on embolization phenomena has been discussed clinically for transcatheter arterial chemoembolization (TACE). We numerically discussed the unique embolization behavior of new deformable toroidal microparticles in blood vessels by computational fluid dynamics simulations. We employed an Eulerian-Eulerian (full Eulerian) fluid-structure interaction (FSI) method to analyze the flow and deformation behaviors of a deformable torus in a cylindrical pipe.

View Article and Find Full Text PDF

The dynamics of the different constituents of the ionic liquid 1-hexyl-3-methylimidazolium chloride (HmimCl) is investigated using nuclear magnetic resonance including chlorine relaxometry, line shape analysis, and proton-detected diffusometry, as well as frequency-dependent shear mechanical measurements. This combination of techniques is useful to probe the individual motions of the anions and the cations, and the sample's overall flow response. The 35Cl- dynamics appears to be close to the structural (or α-) relaxation as seen by rheology.

View Article and Find Full Text PDF

This study presents a comprehensive analysis of the swelling behavior of poly-(ethylene glycol) (PEG)-based hydrogels of different molecular weights under various conditions. The rheological response and swelling kinetics of PEG hydrogels with molecular weight between cross-links ranging from 700 to 10 000 g/mol reveal the connection between architecture and material properties that are important for soft actuators. In addition to providing insight into the network structure and cross-linking density, rheological measurements find that the shear moduli of the networks increase with the degree of water swelling.

View Article and Find Full Text PDF