Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colorectal cancer (CRC) is the third most prevalent type of cancer worldwide. It is also the second most common cause of cancer‑associated mortality; it accounted for about 9.2% of all cancer deaths in 2018, most of which were due to resistance to therapy. The main treatment for CRC is surgery, generally associated with chemotherapy, radiation therapy and combination therapy. However, while chemo‑radiotherapy kills differentiated cancer cells, mesenchymal stem‑like cells are resistant to this treatment, and this can give rise to therapy‑resistant tumors. Our previous study isolated T88 primary colon cancer cells from a patient with sporadic colon cancer. These cells exhibited mesenchymal and epithelial features, high levels of epithelial‑to‑mesenchymal transition transcription factors, and stemness markers. In addition, it was revealed that lithium chloride (LiCl), a specific glycogen synthase kinase (GSK)‑3β inhibitor, induced both the mesenchymal‑to‑epithelial transition and differentiation, and also reduced cell migration, stemness features and cell plasticity in these primary colon cancer cells. The aim of the present study was to investigate the effect of LiCl treatment on the viability of primary colon cancer cells exposed to 7 Gy delivered by high‑energy photon beams, which corresponds to 6 megavolts of energy. To achieve this aim, the viability of irradiated T88 cells was compared with that of irradiated T88 cells pre‑treated with LiCl. As expected, it was observed that LiCl sensitized primary colon cancer cells to high‑energy photon irradiation treatment. Notably, the decrease in cell viability was greater with combined therapy than with irradiation alone. To explore the molecular basis of this response, the effect of LiCl on the expression of Bax, p53 and Survivin, which are proteins involved in the apoptotic mechanism and in death escape, was analyzed. The present study revealed that LiCl upregulated the expression of pro‑apoptotic proteins and downregulated the expression of proteins involved in survival. These effects were enhanced by high‑energy photon irradiation, suggesting that LiCl could be used to sensitize colon cancer cells to radiation therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002976PMC
http://dx.doi.org/10.3892/mmr.2020.10956DOI Listing

Publication Analysis

Top Keywords

cancer cells
32
colon cancer
28
primary colon
16
photon irradiation
12
high‑energy photon
12
cancer
11
cells
11
lithium chloride
8
irradiation treatment
8
radiation therapy
8

Similar Publications

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Introduction: Epigenetic changes are important modulators of gene expression. The histone acetyltransferase gene non-derepressible 5 (Gcn5) is emerging as a pivotal epigenetic player in metabolism and cancer, yet its role in obesity and cardiovascular disease remains elusive.

Aims: To investigate Gcn5 role in obesity-related endothelial dysfunction.

View Article and Find Full Text PDF

S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation.

In Vitro Cell Dev Biol Anim

September 2025

Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.

S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.

View Article and Find Full Text PDF