98%
921
2 minutes
20
In this work, a novel lignin/titanium dioxide (QAL/TiO) hybrid composite with regular microstructure and synergistically enhanced UV absorption properties was synthesized by a simple hydrothermal method using lignin and butyl titanate. The prepared QAL/TiO composite is hybrid structure in which lignin and TiO is uniformly embedded, and has strong chemical bond bonding force. The QAL/TiO hybrid composite particles were used for doping modification of waterborne polyurethane (WPU), which had good interfacial compatibility and dispersibility in WPU. The obtained WPU + QAL/TiO film shows excellent UV shielding performance and great mechanical properties, the tensile strength and elongation at break are significantly improved compared with pure WPU film. And it also has excellent anti-UV aging property, that the mechanical performance basically remains unchanged after 96 h of high power ultraviolet irradiation. This work not only provides a kind of lignin/TiO hybrid composite with neat structure, good dispersion and excellent optical properties, but also has great significance for the high-valued utilization of biomass resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.185 | DOI Listing |
Curr Microbiol
September 2025
Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.
A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Life-like Materials and Systems, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
Transmembrane signaling is essential for cellular communication, yet reconstituting such mechanisms in synthetic systems remains challenging. Here, we report a simple and robust DNA-based mechanism for transmembrane signaling in synthetic cells using cholesterol-modified single-stranded DNA (Chol-ssDNA). We discovered that anchored Chol-ssDNA spontaneously flips across the membrane of giant unilamellar lipid vesicles (GUVs) in a nucleation-driven, defect-mediated process.
View Article and Find Full Text PDFLangmuir
September 2025
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China.
Sodium-ion batteries are promising candidates for large-scale energy storage due to their low cost and resource abundance. However, their cathode materials suffer from poor conductivity and limited cycling stability. Here, we report a Prussian blue (PB)-based cathode hybridized with carboxyl-functionalized carbon nanotubes (CNTs) via a glutamic acid-assisted in situ coordination route.
View Article and Find Full Text PDFAdv Mater
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical
Sonocatalytic therapy (SCT) is a non-invasive tumor treatment modality that utilizes ultrasound (US)- activated sonocatalysts to generate reactive oxygen species (ROS), whose production critically dependent on the electronic structural properties of the catalytic sites. However, the spin state, which is a pivotal descriptor of electronic properties, remains underappreciated in SCT. Herein, a Ti-doped zirconium-based MOF (Ti-UiO-66, denoted as UTN) with ligand-deficient defects is constructed for SCT, revealing the important role of the electronic spin state in modulating intrinsic catalytic activity.
View Article and Find Full Text PDF