98%
921
2 minutes
20
Background: A hallmark of temporal lobe epilepsy (TLE) is brain inflammation accompanied by neuronal demise. Accumulating evidence demonstrates that Rev-Erbα is involved in regulating neuroinflammation and determining the fate of neurons. Therefore, we studied the expression and cellular distribution of Rev-Erbα in the epileptogenic zone of TLE and the effect of treatment with the Rev-Erbα specific agonist SR9009 in the pilocarpine model.
Methods: The expression pattern of Rev-Erbα was investigated by western blotting, immunohistochemistry, and immunofluorescence labeling in patients with TLE. Next, the effects of SR9009 on neuroinflammation, neuronal apoptosis, and neuronal loss in the mouse hippocampus 7 days after status epilepticus (SE) were assessed by western blotting, immunofluorescence labeling staining, and TUNEL staining.
Results: The western blotting, immunohistochemistry, and immunofluorescence labeling results revealed that Rev-Erbα was downregulated in the epileptogenic zone of TLE patients and mainly localized in neurons, astrocytes, and presumably microglia. Meanwhile, the expression of Rev-Erbα was decreased in the hippocampus and temporal neocortex of mice treated with pilocarpine in the early post-SE and chronic phases. Interestingly, the expression of Rev-Erbα in the normal hippocampus showed a 24-h rhythm; however, the rhythmicity was disturbed in the early phase after SE, and this disturbance was still present in epileptic animals. Our further findings revealed that treatment with SR9009 inhibited NLRP3 inflammasome activation, inflammatory cytokine (IL-1β, IL-18, IL-6, and TNF-α) production, astrocytosis, microgliosis, and neuronal damage in the hippocampus after SE.
Conclusions: Taken together, these results suggested that a decrease in Rev-Erbα in the epileptogenic zone may contribute to the process of TLE and that the activation of Rev-Erbα may have anti-inflammatory and neuroprotective effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993411 | PMC |
http://dx.doi.org/10.1186/s12974-020-1718-7 | DOI Listing |
The triiodothyronine (T3) inhibitory effect on the thyrotropin (TSH)beta- and alpha-subunit genes is believed to be mediated by binding of T3 to specific nuclear receptors that are present in various isoforms. alphaTSH cells, which are derived from a pure alpha-subunit secreting thyrotropic tumor, contain the same nuclear factors that are important for alpha-subunit gene expression in TSH-expressing T3-responsive thyrotropic cells (TtT97). However, as in the parent tumor, alpha-subunit expression in alphaTSH cells was not inhibited by T3, despite the presence of high-affinity nuclear T3 receptors (TRs) with a similar number of sites per cell as in TtT97.
View Article and Find Full Text PDF