98%
921
2 minutes
20
Achieving efficient devices while maintaining a high fabrication yield is a key challenge in the fabrication of solution-processed, perovskite-based light-emitting diodes (PeLEDs). In this respect, pinholes in the solution-processed perovskite layers are a major obstacle. These are usually mitigated using organic electron-conducting planarization layers. However, these organic interlayers are unstable under applied bias in air and suffer from limited charge carrier mobility. In this work, we present a high brightness p-i-n PeLED based on a novel blade-coated silver microflake (SMF) rear electrode, which allows for a low-cost nanocrystalline ZnO inorganic electron-transporting layer to be used. This novel SMF contact is crucial for achieving high performance as it prevents the electrical shorting suffered when standard thermally evaporated silver rear contacts are used. The fabricated PeLEDs exhibit an excellent maximum luminance of 98,000 cd/m, a maximum current efficiency of 22.3 cd/A, and a high external quantum efficiency of 4.6% under 5.9 V forward bias. The SMF rear contact can be printed and scaled at low cost to large areas and applied to flexible devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b18527 | DOI Listing |
J Phys Chem Lett
September 2025
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.
Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.
View Article and Find Full Text PDFChemphyschem
September 2025
Institute of Physics, Polish Academy of Sciences, PL-02-668, Warsaw, Poland.
B,N-substituted graphene ribbons are computationally designed and their spectroscopic properties are systematically explored with wave-function-based electronic structure methods. All B,N-graphene ribbons exhibit exceptionally small S-T energy gaps. The oscillator strength of the S-S transition increases monotonically with the length of the ribbons.
View Article and Find Full Text PDFLuminescence
September 2025
Department of Physics, Saveetha Engineering College (Autonomous), Chennai, Tamilnadu, India.
The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.
View Article and Find Full Text PDFThe formation of heterostructure interfaces from quantum dots (or nanocrystals) and lower-dimensional (2D or quasi-2D) materials enables interfacial and optoelectronic property tuning. However, this strategy has not been sufficiently characterized, for example, the application of cesium halide nanocrystals to quasi-2D perovskite structures is underexplored, and the mechanisms of the resulting structural modifications and specific nanocrystal roles are not fully understood. Herein, the effects of postsynthetically surface-modifying quasi-2D perovskite films with CsX ( = Cl, Br, I) nanocrystals are examined to bridge this gap.
View Article and Find Full Text PDFHardwareX
September 2025
School of Biological Sciences, University of Utah, Salt Lake City, UT, United States of America.
The instrument described in this article measures the absorbance of visible light (with wavelengths in the range of approximately 400 to 650 nm) by liquid samples, a method widely used for determining solute concentrations. To minimize the cost of the instrument, interchangeable light-emitting diodes (LEDs) are used as light sources. Transmitted light is detected using a photodiode device and the signals are processed using an Arduino microprocessor board.
View Article and Find Full Text PDF