98%
921
2 minutes
20
Understanding the slow wave propagation patterns of Interstitial Cells of Cajal (ICC) is essential when designing Gastric Electrical Stimulators (GESs) to treat motility disorders. A GES with the ability to both sense and pace, working in closed-loop with the ICC, will enable efficient modulation of Gastrointestinal (GI) dysrhythmias. However, existing GESs targeted at modulating GI dysrhythmias operate in an open-loop and hence their clinical efficacy is uncertain. This paper proposes a novel model-based approach for designing GESs that operate in closed-loop with the GI tract. GES is modelled using Hybrid Input Output Automata (HIOA), a well-known formal model, which is suitable for designing safety-critical systems. A two-dimensional ICC network working in real-time with the GES is developed using the same compositional HIOA framework. The ICC network model is used to simulate normal and diseased action potential propagation patterns akin to those observed during GI dysrhythmias. The efficacy of the proposed GES is then validated by integrating it in closed-loop with the ICC network. Results show that the proposed GES is able to sense the propagation patterns and modulate the dysrhythmic patterns of bradygastria back to its normal state automatically. The proposed design of the GES is flexible enough to treat a variety of diseased dysrhythmic patterns using closed-loop operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2019.103576 | DOI Listing |
Leukemia
September 2025
University Children's Hospital Zurich, Pediatric Oncology and Children's Research Center, Zurich, Switzerland.
Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.
View Article and Find Full Text PDFBrain Res Bull
September 2025
Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA; Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA.
We propose a Biophysically Restrained Analog Integrated Neural Network (BRAINN), an analog electrical network that models the dynamics of brain function. The network interconnects analog electrical circuits that simulate two tightly coupled brain processes: (1) propagation of an action potential, and (2) regional cerebral blood flow in response to the metabolic demands of signal propagation. These two processes are modeled by two branches of an electrical circuit comprising a resistor, a capacitor, and an inductor.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
PandemiX - Center for Interdisciplinary Study of Pandemic Signatures, Copenhagen 2300, Denmark.
We analyzed the patterns of transmission in the 2022 clade IIb mpox epidemic as it unfolded in the European population of men who have sex with men (MSM). We developed an agent-based model that simulates sexual pair formation, incorporating both brief and longer-term sexual relationships. The model implements survey data on the sexual behavior of MSM and accounts for the highly heterogeneous nature of the sexual contact network within this community.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
Pufferfish exhibit the smallest vertebrate genomes, making them ideal models for investigating evolutionary patterns and processes that affect genome size. While the Takifugu rubripes genome was fully sequenced two decades ago, key evolutionary drivers remain elusive. We sequenced 10 pufferfish genomes and generated 35 transcriptomes and 13 methylomes to understand genomic evolutionary mechanisms.
View Article and Find Full Text PDF