Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intervertebral disc degeneration (IDD) is the main cause of low back pain and the mechanism of which is far from fully revealed. Although inflammation directed nucleus pulposus (NP) extracellular matrix metabolism dysregulation is known to be the main cause of the degeneration process, few is known about the protective factors. Using high-throughput label-free proteomics, we found that inflammation-related autocrine factor Chitinase-3-like protein 1 (CHI3L1, or YKL-40) is highly expressed in the NP cells during degeneration. Immunohistochemical analysis show that the expression of CHI3L1 is NP tissue specific, and increase significantly during degeneration. Overexpression of CHI3L1 significantly decrease the catabolism, and increase the anabolism of extracellular matrix. Knockdown of CHI3L1 using siRNAs show the opposite results, which imply that the protective role of CHI3L1 in IDD. Using high-throughput RNA sequencing and functional analyses, we find that AKT3 expression and its phosphorylation is mainly regulated by CHI3L1. And lastly, the mechanism of which is also validated using human and mouse degenerated NP tissues. In summary, our findings show that the inflammation-related autocrine factor CHI3L1 is NP specific, and it protects IDD by promoting the AKT3 signaling, which may serve as a potential therapeutic target in intervertebral disc degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201902096RDOI Listing

Publication Analysis

Top Keywords

intervertebral disc
12
disc degeneration
12
nucleus pulposus
8
akt3 signaling
8
extracellular matrix
8
inflammation-related autocrine
8
autocrine factor
8
chi3l1
7
degeneration
6
inflammatory-sensitive chi3l1
4

Similar Publications

Cell and Hydrogel-Integrated Therapies for Intervertebral Disc Regeneration.

Adv Healthc Mater

September 2025

Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.

Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), significantly affecting on global disability and healthcare costs. Traditional treatments primarily focus on symptom management rather than addressing the underlying causes, such as the decline in nucleus pulposus (NP) cells and reduced extracellular matrix (ECM) synthesis. Cell therapy shows promise by replenishing NP cells, activating resident cells, and enhancing ECM deposition.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a prevalent spinal condition frequently associated with pain and motor impairment, imposing a substantial burden on quality of life. Despite extensive investigations into the genetic predisposition to IDD, the precise pathogenic genes and molecular pathways involved remain inadequately characterized, underscoring the need for continued research to clarify its genetic underpinnings.

Methods: This study leveraged IDD data from the FinnGen R12 cohort and integrated expression quantitative trait loci data across 49 tissues from the Genotype-Tissue Expression version 8 database to perform a cross-tissue transcriptome-wide association study (TWAS).

View Article and Find Full Text PDF

Lower back pain caused by intervertebral disk degeneration (IDD) is a common problem among middle-aged and older adults. We aimed to identify novel diagnostic biomarkers of IDD and analyze the potential association between key genes and immune cell infiltration. We screened differentially expressed genes (DEGs) related to IDD and gene sets associated with mitochondrial energy metabolism using the Gene Expression Omnibus and GeneCards databases, respectively.

View Article and Find Full Text PDF

Lycium barbarum alleviates oxidative stress-induced ferroptosis and enhances mitophagy in intervertebral disc degeneration.

Cell Signal

September 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Molecular Pharmacology Research Center, School of Pharmaceutical Sciences; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China. Electronic address:

Lycium barbarum is a traditional Chinese medicine that has been demonstrated to exhibit a wide variety of biological functions, such as antioxidation, neuroprotection, and immune modulation. The therapeutic effect of Lycium barbarum on intervertebral disc degeneration (IVDD) has not been conclusively established. In our study, we investigated the mechanisms of Lycium barbarum extract (LBE) using Network pharmacology and bioinformatic analyses.

View Article and Find Full Text PDF

Pug dogs are predisposed to thoracolumbar myelopathy associated with vertebral articular process dysplasia, suggesting a biomechanical etiology. While surgery is commonly pursued, long-term outcomes remain poorly defined. This retrospective descriptive case series reports on seven Pug dogs that underwent surgical treatment for thoracolumbar myelopathy and were followed up for at least 7 years postoperatively.

View Article and Find Full Text PDF