98%
921
2 minutes
20
The defective human survival motor neuron 1 (SMN1) gene leads to spinal muscular atrophy (SMA), the most common genetic cause of infant mortality. We previously reported that loss of SMN results in rapid differentiation of Drosophila germline stem cells and mouse embryonic stem cells (ESCs), indicating that SMN also plays important roles in germ cell development and stem cell biology. Here, we show that in healthy mice, SMN is highly expressed in the gonadal tissues, prepubertal spermatogonia, and adult spermatocytes, whereas low SMN expression is found in differentiated spermatid and sperm. In SMA-like mice, the growth of testis tissues is retarded, accompanied with gamete development abnormalities and loss of the spermatogonia-specific marker. Consistently, knockdown of Smn1 in spermatogonial stem cells (SSCs) leads to a compromised regeneration capacity in vitro and in vivo in transplantation experiments. In SMA-like mice, apoptosis and accumulation of the R-loop structure were significantly elevated, indicating that SMN plays a critical role in the survival of male germ cells. The present work demonstrates that SMN, in addition to its critical roles in neuronal development, participates in mouse germ cell and spermatogonium maintenance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037566 | PMC |
http://dx.doi.org/10.3390/ijms21030794 | DOI Listing |
PLoS One
September 2025
Nutrition Innovation Center, Standard Process Inc., Kannapolis, North Carolina, United States of America.
Polyamines (PAs), including spermidine, spermine and their precursor, putrescine, are ubiquitous molecules that are vital for a variety of physiological processes. Recently, PAs gained research attention because of their roles in promoting longevity and preventing age-related diseases. Circulating and tissue levels of PAs appear to decline with age, while higher intake of PAs in humans is correlated with better health during aging.
View Article and Find Full Text PDFUrologie
September 2025
Klinik für Urologie, Medizinisches Forschungszentrum, Urologisches Forschungslabor, Translationale UroOnkologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland.
Type II testicular germ cell tumors (GCT) are the most common malignant disease in young men, with a steadily increasing incidence. They originate from germ cell neoplasia in situ and are classified into seminomas (SE) and nonseminomas (NS). The NS subtype embryonal carcinoma (EC) exhibits stem cell-like characteristics and, thus, has the potential to differentiate into teratomas (TE) or extraembryonic tissues, such as yolk-sac tumors (YST) and choriocarcinomas (CC).
View Article and Find Full Text PDFZool Res
September 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China. E-mail:
Zona pellucida glycoprotein-1 (ZP1) is essential for maintaining oocyte structural integrity and facilitating fertilization. Mutations in are strongly associated with primary infertility disorders such as fertilization failure and empty follicle syndrome; however, the absence of accurate experimental models has hindered mechanistic understanding and obscured the etiological basis of -related infertility. In this study, CRISPR/Cas9-mediated genome editing was employed to generate two -edited cynomolgus macaques ( ), designated #ZP1-1 (male) and #ZP1-2 (female).
View Article and Find Full Text PDFZool Res
September 2025
Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China. E-mail:
Chromatin remodeling and transcriptional reprogramming play critical roles during mammalian meiotic prophase I; however, the precise mechanisms regulating these processes remain poorly understood. Our previous work demonstrated that deletion of heat shock factor 5 (HSF5), a member of the heat shock factor family, induces meiotic arrest and male infertility. However, the molecular pathways through which HSF5 governs meiotic progression have not yet been fully elucidated.
View Article and Find Full Text PDFZool Res
September 2025
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China.
Bivalve mollusks represent a taxonomically and economically significant clade within Mollusca. However, the regulatory mechanisms governing their embryonic development remain poorly characterized. The dwarf surf clam ( ), characterized by a short generation time and high fecundity, has recently gained recognition as an ideal model system for bivalve embryological research.
View Article and Find Full Text PDF