Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autism Spectrum Disorder (ASD) is a brain disorder that is typically characterized by deficits in social communication and interaction, as well as restrictive and repetitive behaviors and interests. During the last years, there has been an increase in the use of magnetic resonance imaging (MRI) to help in the detection of common patterns in autism subjects versus typical controls for classification purposes. In this work, we propose a method for the classification of ASD patients versus control subjects using both functional and structural MRI information. Functional connectivity patterns among brain regions, together with volumetric correspondences of gray matter volumes among cortical parcels are used as features for functional and structural processing pipelines, respectively. The classification network is a combination of stacked autoencoders trained in an unsupervised manner and multilayer perceptrons trained in a supervised manner. Quantitative analysis is performed on 817 cases from the multisite international Autism Brain Imaging Data Exchange I (ABIDE I) dataset, consisting of 368 ASD patients and 449 control subjects and obtaining a classification accuracy of 85.06 ± 3.52% when using an ensemble of classifiers. Merging information from functional and structural sources significantly outperforms the implemented individual pipelines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994708PMC
http://dx.doi.org/10.1016/j.nicl.2020.102181DOI Listing

Publication Analysis

Top Keywords

functional structural
12
autism spectrum
8
spectrum disorder
8
asd patients
8
control subjects
8
functional
5
improving detection
4
autism
4
detection autism
4
disorder combining
4

Similar Publications

Why transport matters: an update on carrier proteins in Apicomplexan parasites.

Curr Opin Microbiol

September 2025

Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom. Electronic address:

The movement of molecules across the membranous barriers of a cell is fundamental to cellular homeostasis in every living organism. This vital process is facilitated through a mechanistically diverse class of proteins, collectively known as membrane transporters. Among these are so-called carrier proteins that can function in passive and active transport mechanisms.

View Article and Find Full Text PDF

The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.

View Article and Find Full Text PDF

A pediatric-onset case of chronic kidney disease caused by a novel sporadic variant and literature review.

Turk J Pediatr

September 2025

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: The α-actinin-4 (ACTN4) gene encodes an actin-binding protein, which plays a crucial role in maintaining the structure and function of podocytes. Previous studies have confirmed that ACTN4 mutations can lead to focal segmental glomerulosclerosis-1 (FSGS1), a rare disease primarily manifesting in adolescence or adulthood, characterized by mild to moderate proteinuria, with some cases progressing slowly to end-stage renal disease.

Case Presentation: We report a 12.

View Article and Find Full Text PDF

Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).

View Article and Find Full Text PDF

Solvation Structure of Np in a Noncomplexing Environment.

Inorg Chem

September 2025

Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

The solvation structure of an Np ion in an aqueous, noncomplexing and nonoxidizing environment of trifluoromethanesulfonic (triflic) acid was investigated with X-ray absorption spectroscopy (XAS) combined with ab initio molecular dynamics (AIMD) and time-dependent density functional theory (TDDFT) calculations. Np L-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were collected for Np in 1, 3, and 7 M triflic acid using a laboratory-scale spectrometer and separately at a synchrotron facility, producing data sets in excellent agreement. TDDFT calculations revealed a weak pre-edge feature not previously reported for Np L-edge XANES.

View Article and Find Full Text PDF