Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The plasma membrane intrinsic protein PIP2;5 is the most highly expressed aquaporin in maize () roots. Here, we investigated how deregulation of PIP2;5 expression affects water relations and growth using maize overexpression (OE; B104 inbred) or knockout (KO; W22 inbred) lines. The hydraulic conductivity of the cortex cells of roots grown hydroponically was higher in PIP2;5 OE and lower in KO lines compared with the corresponding wild-type plants. While whole-root conductivity decreased in the KO lines compared to the wild type, no difference was observed in OE plants. This paradox was interpreted using the MECHA hydraulic model, which computes the radial flow of water within root sections. The model hints that the plasma membrane permeability of the cells is not radially uniform but that PIP2;5 may be saturated in cell layers with apoplastic barriers, i.e. the endodermis and exodermis, suggesting the presence of posttranslational mechanisms controlling the abundance of PIP in the plasma membrane in these cells. At the leaf level, where the gene is weakly expressed in wild-type plants, the hydraulic conductance was higher in the PIP2;5 OE lines compared with the wild-type plants, whereas no difference was observed in the KO lines. The temporal trend of leaf elongation rate, used as a proxy for that of xylem water potential, was faster in PIP2;5 OE plants upon mild stress, but not in well-watered conditions, demonstrating that PIP2;5 may play a beneficial role in plant growth under specific conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140956PMC
http://dx.doi.org/10.1104/pp.19.01183DOI Listing

Publication Analysis

Top Keywords

plasma membrane
12
lines compared
12
wild-type plants
12
water relations
8
plant growth
8
higher pip25
8
difference observed
8
pip25
7
lines
5
plants
5

Similar Publications

Violacein-Loaded Outer Membrane Vesicles from Exhibit Potent Anti-Melanoma Activity and .

ACS Biomater Sci Eng

September 2025

Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo 13083-862, Brazil.

Violacein exhibits antitumor activity, indicating potential for future clinical application. However, an efficient delivery system is required for the clinical use of this hydrophobic compound. Effective delivery systems can enhance the solubility and bioavailability of hydrophobic compounds like violacein, facilitating its clinical application for antitumor therapy.

View Article and Find Full Text PDF

This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.

View Article and Find Full Text PDF

FocA belongs to the formate-nitrite transporter (FNT) superfamily of pentameric membrane proteins, which translocate small, monovalent anions across the cytoplasmic membrane of bacteria, archaea and certain protists. FocA translocates formate anions or formic acid bidirectionally through a hydrophobic pore present in each protomer. This pore has two highly conserved amino acid residues, threonine 91 and histidine 209 that are proposed to protonate the anion during the translocation process.

View Article and Find Full Text PDF

Strong intermolecular interactions facilitate the formation of efficient ion transport channels, which, in turn, significantly boost the performance of anion exchange membranes (AEMs). Herein, 9-anthracene methanol with both π-π stacking and hydrogen bonding intermolecular forces is used as a bifunctional unit to synthesize high-performance AEMs through the Friedel-Crafts superacid catalytic reaction for the first time. The π-π stacking in the bifunctional units can induce hydrophilic pyridine cations to aggregate, and the hydrogen bonding can provide transport sites for OH and water molecules in the hydrophobic component.

View Article and Find Full Text PDF

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF