98%
921
2 minutes
20
Wearable technology for the automatic detection of gait events has recently gained growing interest, enabling advanced analyses that were previously limited to specialist centres and equipment (e.g., instrumented walkway). In this study, we present a novel method based on dilated convolutions for an accurate detection of gait events (initial and final foot contacts) from wearable inertial sensors. A rich dataset has been used to validate the method, featuring 71 people with Parkinson's disease (PD) and 67 healthy control subjects. Multiple sensors have been considered, one located on the fifth lumbar vertebrae and two on the ankles. The aims of this study were: (i) to apply deep learning (DL) techniques on wearable sensor data for gait segmentation and quantification in older adults and in people with PD; (ii) to validate the proposed technique for measuring gait against traditional gold standard laboratory reference and a widely used algorithm based on wavelet transforms (WT); (iii) to assess the performance of DL methods in assessing high-level gait characteristics, with focus on stride, stance and swing related features. The results showed a high reliability of the proposed approach, which achieves temporal errors considerably smaller than WT, in particular for the detection of final contacts, with an inter-quartile range below 70 ms in the worst case. This study showes encouraging results, and paves the road for further research, addressing the effectiveness and the generalization of data-driven learning systems for accurate event detection in challenging conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2019.8856685 | DOI Listing |
J Eval Clin Pract
September 2025
Department of Orthopedics and Traumatology, Medical Faculty, University of Health Sciences, Antalya, Turkey.
Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.
Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.
Dermatitis
September 2025
From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.
Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.
View Article and Find Full Text PDFElectromagn Biol Med
September 2025
Computer Science and Business Systems, Sri Krishna College of Engineering and Technology, Coimbatore, India.
Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
Objectives: We propose a myocardial infarction (MI) detection and localization model for improving the diagnostic accuracy for MI to provide assistance to clinical decision-making.
Methods: The proposed model was constructed based on multi-scale field residual blocks fusion modified channel attention (MSF-RB-MCA). The model utilizes lead II electrocardiogram (ECG) signals to detect and localize MI, and extracts different levels of feature information through the multi-scale field residual block.
Ren Fail
December 2025
Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Large language models (LLMs) represent a transformative advance in artificial intelligence, with growing potential to impact chronic kidney disease (CKD) management. CKD is a complex, highly prevalent condition requiring multifaceted care and substantial patient engagement. Recent developments in LLMs-including conversational AI, multimodal integration, and autonomous agents-offer novel opportunities to enhance patient education, streamline clinical documentation, and support decision-making across nephrology practice.
View Article and Find Full Text PDF