98%
921
2 minutes
20
Despite substantial clinical benefit of targeted and immune checkpoint blockade-based therapies in melanoma, resistance inevitably develops. We show cytoskeletal remodeling and changes in expression and activity of ROCK-myosin II pathway during acquisition of resistance to MAPK inhibitors. MAPK regulates myosin II activity, but after initial therapy response, drug-resistant clones restore myosin II activity to increase survival. High ROCK-myosin II activity correlates with aggressiveness, identifying targeted therapy- and immunotherapy-resistant melanomas. Survival of resistant cells is myosin II dependent, regardless of the therapy. ROCK-myosin II ablation specifically kills resistant cells via intrinsic lethal reactive oxygen species and unresolved DNA damage and limits extrinsic myeloid and lymphoid immunosuppression. Efficacy of targeted therapies and immunotherapies can be improved by combination with ROCK inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958528 | PMC |
http://dx.doi.org/10.1016/j.ccell.2019.12.003 | DOI Listing |
Biochem Biophys Res Commun
August 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China. Electronic address:
Malignant tumors present a major global health burden, as they generally have a poor prognosis, and the efficacy of available treatments is limited. Copine family members (CPNEs) play crucial roles in the regulation of tumor cell proliferation, metastasis, and therapeutic resistance, as well as in tumor diagnosis and prognostic risk stratification. CPNEs can facilitate tumor cell survival by regulating cell cycle progression and cell death.
View Article and Find Full Text PDFNat Mater
September 2025
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study pathophysiologic cell function.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
September 2025
College of Life Sciences, Shandong Normal University, Jinan, China.
Cilia, evolutionarily conserved organelles on eukaryotic cell surfaces, depend on the intraflagellar transport (IFT) system for their assembly, maintenance, and signaling. The IFT system orchestrates bidirectional trafficking of structural components and signaling molecules through coordinated actions of protein complexes and molecular motors. IFT complexes assemble into anterograde trains at the ciliary base and undergo structural remodeling at the ciliary tip to form retrograde trains, with bidirectional motility regulated by modifications on the trains per se and the microtubule tracks.
View Article and Find Full Text PDFT cell activation is characterized by rapid reorganization of the actin cytoskeleton and cell spreading on the antigen presenting cell. The T cell nucleus occupies a large fraction of the cell volume, and its mechanical properties are likely to act as a key determinant of activation. However, the contribution of nuclear mechanics to T cell spreading and activation is not well understood.
View Article and Find Full Text PDFJ Cell Sci
September 2025
Department of Biochemistry, University of Illinois at Urbana-Champaign, IL, USA.
We present evidence that the association of Epithelial (E)-cadherin (CHD1) extracellular domain and epidermal growth factor receptor (EGFR, ErbB1) is obligatory for cadherin force transduction signaling. E-cadherin and EGFR associate at cell surfaces, independent of their cytoplasmic domains, and tension on E-cadherin activates EGFR signaling. Using engineered cadherin mutants that disrupt co-immunoprecipitation with EGFR, but not adhesion, we show that the hetero-receptor complex is required to mechanically activate signaling and downstream cytoskeletal remodeling at cadherin adhesions.
View Article and Find Full Text PDF