98%
921
2 minutes
20
The human brain consumes more energy than any other organ in the body and it relies on an uninterrupted supply of energy in the form of adenosine triphosphate (ATP) to maintain normal cognitive function. This constant supply of energy is made available through an interdependent system of metabolic pathways in neurons, glia and endothelial cells that each have specialized roles in the delivery and metabolism of multiple energetic substrates. Perturbations in brain energy metabolism is associated with a number of different neurodegenerative conditions including impairments in cognition associated with infection by the Human Immunodeficiency Type 1 Virus (HIV-1). Adaptive changes in brain energy metabolism are apparent early following infection, do not fully normalize with the initiation of antiretroviral therapy (ART), and often worsen with length of infection and duration of anti-retroviral therapeutic use. There is now a considerable amount of cumulative evidence that suggests mild forms of cognitive impairments in people living with HIV-1 (PLWH) may be reversible and are associated with specific modifications in brain energy metabolism. In this review we discuss brain energy metabolism with an emphasis on adaptations that occur in response to HIV-1 infection. The potential for interventions that target brain energy metabolism to preserve or restore cognition in PLWH are also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233457 | PMC |
http://dx.doi.org/10.1016/j.expneurol.2020.113181 | DOI Listing |
Indian J Nucl Med
August 2025
Department of Physics, Shi.C., Islamic Azad University, Shiraz, Iran.
Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.
View Article and Find Full Text PDFJ Neuroeng Rehabil
September 2025
Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076, Tübingen, Germany.
Innovative technology allows for personalization of stimulation frequency in dual-site deep brain stimulation (DBS), offering promise for challenging symptoms in advanced Parkinson's disease (PD), particularly freezing of gait (FoG). Early results suggest that combining standard subthalamic nucleus (STN) stimulation with substantia nigra pars reticulata (SNr) stimulation may improve FoG outcomes. However, patient response and the optimal SNr stimulation frequency vary.
View Article and Find Full Text PDFNat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFExp Neurobiol
August 2025
Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea.
Aging correlates with alterations in metabolism and neuronal function, which affect the overall regulation of energy homeostasis. Recent studies have highlighted that protein O-GlcNAcylation, a common post-translational modification regulating metabolic function, is linked to aging. In particular, elevated O-GlcNAcylation increases energy expenditure, potentially due to alterations in the neuronal function of the hypothalamic arcuate nucleus (ARC), a key brain region for energy balance and metabolic processes.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
The central nervous system (CNS) is particularly vulnerable to endocrine-disrupting chemicals, especially bisphenol analogues. Bisphenol A (BPA), a widely studied compound, has been associated with various neurological disorders, leading to restrictions on its use and the subsequent adoption of alternative chemicals such as 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP). However, concerns regarding the potential neurotoxicity of BPSIP have emerged.
View Article and Find Full Text PDF