98%
921
2 minutes
20
Half of the women who sustain a hip fracture would not qualify for osteoporosis treatment based on current DXA-estimated bone mineral density criteria. Therefore, a better approach is needed to determine if an individual is at risk of hip fracture from a fall. The objective of this study was to determine the association between radiation-free MRI-derived bone strength and strain simulations compared to results from direct mechanical testing of cadaveric femora. Imaging was conducted on a 3-Tesla MRI scanner using two sequences: one balanced steady-state free precession sequence with 300 μm isotropic voxel size and one spoiled gradient echo with anisotropic voxel size of 234 × 234 × 1500 μm. Femora were dissected free of soft-tissue and 4350-ohm strain-gauges were securely applied to surfaces at the femoral shaft, inferior neck, greater trochanter, and superior neck. Cadavers were mechanically tested with a hydraulic universal test frame to simulate loading in a sideways fall orientation. Sideways fall forces were simulated on MRI-based finite element meshes and bone stiffness, failure force, and force for plastic deformation were computed. Simulated bone strength metrics from the 300 μm isotropic sequence showed strong agreement with experimentally obtained values of bone strength, with stiffness (r = 0.88, p = 0.0002), plastic deformation point (r = 0.89, p < 0.0001), and failure force (r = 0.92, p < 0.0001). The anisotropic sequence showed similar trends for stiffness, plastic deformation point, and failure force (r = 0.68, 0.70, 0.84; p = 0.02, 0.01, 0.0006, respectively). Surface strain-gauge measurements showed moderate to strong agreement with simulated magnitude strain values at the greater trochanter, superior neck, and inferior neck (r = -0.97, -0.86, 0.80; p ≤0.0001, 0.003, 0.03, respectively). The findings from this study support the use of MRI-based FE analysis of the hip to reliably predict the mechanical competence of the human femur in clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096175 | PMC |
http://dx.doi.org/10.1016/j.bone.2020.115227 | DOI Listing |
PLoS One
September 2025
Mechanical and Nuclear Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.
View Article and Find Full Text PDFPhysiother Theory Pract
September 2025
School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
Background: Knee osteoarthritis (OA) causes pain and diminishes quality of life. Backward walking exercise (BWE) has been shown to improve lower muscle strength and reduce knee adduction moment, making it a recommended intervention for knee OA rehabilitation. This study aims to evaluate the effectiveness of BWE combined with conventional rehabilitation programs on pain intensity and disability among individuals with knee OA.
View Article and Find Full Text PDFArch Osteoporos
September 2025
School of Clinical Medicine, University of Cambridge, Cambridge, UK.
Unlabelled: The National Osteoporosis Guideline Group (NOGG) has updated the revised UK guideline for the assessment and management of osteoporosis and the prevention of fragility fractures in postmenopausal women, and men age 50 years and older. This guideline is relevant for all healthcare professionals involved in osteoporosis management.
Introduction: The UK National Osteoporosis Guideline Group (NOGG) first produced a guideline on the prevention and treatment of osteoporosis in 2008, with updates in 2013, 2017 and 2021.
J Vis Exp
August 2025
Department of Periodontology, Faculty of Dentistry, University of Çukurova;
Platelet-Rich Fibrin (PRF) is an autologous matrix rich in platelets, leukocytes, and growth factors that support tissue regeneration. Enhancing its structural and biological properties through biomaterial supplementation may improve clinical outcomes. This study evaluated the effects of adding hyaluronic acid (HA) and collagen to PRF on growth factor release and mechanical strength.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
Musculoskeletal disorders, including bone fractures, osteoarthritis, and muscle injuries, represent a leading cause of global disability, revealing the urgency for advanced therapeutic solutions. However, current therapies face limitations including donor-site morbidity, immune rejection, and inadequate mimicry of dynamic tissue repair processes. DNA-based hydrogels emerge as transformative platforms for musculoskeletal reconstruction, with their sequence programmability, dynamic adaptability, and biocompatibility to balance structural support and biological functions.
View Article and Find Full Text PDF