A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, a novel injectable hydrogel with biocompatibility and biodegradability through Schiff base reaction was prepared for soft tissue adhesive and hemostasis. Aldehyde hydroxyethyl starch (AHES) was prepared by oxidizing hydroxyethyl starch to get aldehyde groups. Amino carboxymethyl chitosan (ACC) was prepared by grafting ethylenediamine onto carboxymethyl chitosan to get more amino groups. Two-component AHES/ACC hydrogel was formed through Schiff base reaction between aldehyde and amino groups. By changing the reaction conditions various contents of aldehyde and amino group were achieved. The properties of AHES/ACC hydrogel were tunable including gelation time, swelling ratio, degradation and mechanical tensile by varying the content of aldehyde and amino groups. Then biocompatibility measurements showed that AHES/ACC hydrogels supported cell viability and proliferation in vitro and exhibited good biodegradability and biocompatibility in vivo. AHES/ACC hydrogel also had effective hemostatic ability. Thus, this study provides a strategy for the design and fabrication of fast in situ forming hydrogels. Through Schiff base reaction in situ forming hydrogel derived from natural polysaccharides can be modulated and prepared for soft tissue adhesive, hemostasis or other biomedical applications in future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.01.005DOI Listing

Publication Analysis

Top Keywords

schiff base
16
base reaction
16
situ forming
12
soft tissue
12
tissue adhesive
12
adhesive hemostasis
12
amino groups
12
ahes/acc hydrogel
12
aldehyde amino
12
forming hydrogel
8

Similar Publications