Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: The mechanism of fast inspiratory flow rate (V') induced lung injury is unclear. As fast V' increases hysteresis, a measure of surface tension at the air-liquid interface, surfactant release or function may be important. This experimental study examines the contribution of impaired surfactant release or function to dynamic-VILI.

Methods: Isolated perfused lungs from male Sprague Dawley rats were randomly allocated to four groups: a long or short inspiratory time (Ti = 0.5 s; slow V' or Ti = 0.1 s; fast V') at PEEP of 2 or 10 cmHO. Tidal volume was constant (7 ml/kg), with f = 60 breath/min. Forced impedance mechanics (tissue elastance (Htis), tissue resistance (Gtis) and airway resistance (Raw) were measured at 30, 60 and 90 min following which the lung was lavaged for surfactant phospholipids (PL) and disaturated PL (DSP).

Results: Fast V' resulted in a stiffer lung. Concurrently, PL and DSP were decreased in both tubular myelin rich and poor fractions. Phospholipid decreases were similar with PEEP. In a subsequent cohort, laser confocal microscopy-based assessment demonstrated increased cellular injury with increased V' at both 30 and 90 min ventilation.

Conclusion: Rapid V' may contribute to ventilator induced lung injury (VILI) through reduced surfactant release and/or more rapid reuptake despite unchanged tidal stretch.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00408-019-00317-1DOI Listing

Publication Analysis

Top Keywords

surfactant release
12
reduced surfactant
8
inspiratory flow
8
induced lung
8
lung injury
8
release function
8
lung
5
surfactant contributes
4
contributes increased
4
increased lung
4

Similar Publications

Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.

View Article and Find Full Text PDF

Selected comparative aspects and unexpected findings in acute phase proteins and other biomarkers of animal health and welfare.

Res Vet Sci

September 2025

Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain. Electronic address:

Recent years have seen advances in clinical biochemistry of domestic animals which have highlighted comparative differences between species and have also identified fundamental aspects of the biochemical mechanisms in physiological conditions and disease, that have implications across species, including human, health and welfare. From investigations in diverse species using biochemical, immunological, proteomic and metabolomic approaches a series of species particularities and unexpected results for some biomarkers have been made. These observations cover (1) the differences between species in the acute phase protein (APP) response to infection and inflammation; (2) the non-hepatic synthesis and release in the mammary gland, adipose tissue and intestine of APP (3) the response of haptoglobin (HP) as a biomarker for stress; (4) observations in non-mammalian species related to hemopexin and HP; (5) the response of bile acids in milk to mastitis; (6) barley serine protease inhibitors being identified in bovine faeces; (7) alkaline phosphatase being present in bovine nasal secretion; (8) saliva findings with analytes such as adenine deaminase showing different activity between saliva and serum and a detergent-like surfactant protein, latherin being found in equine saliva and sweat and (9) serum enzymes and selective muscle protein reaction of Atlantic salmon as an example of the differences in biochemistry between terrestrial and aquatic species.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.

View Article and Find Full Text PDF

Objective: Through a scoping review, this study meticulously mapped and characterized these nanostructured clays used to release antibacterial active compounds from direct restorative dental materials.

Material And Methods: The systematic approach involved searches in the PubMed/MEDLINE, Lilacs, Web of Science, Scopus, ScienceDirect, and Embase databases. Two independent and calibrated researchers (kappa: 0.

View Article and Find Full Text PDF

Pesticides are of great significance in ensuring food yield. However, the extensive use of pesticides has led to severe environmental pollution and significant economic losses. Chitosan-based pesticide delivery systems potentially present a favorable approach to enhance pesticide using efficiency.

View Article and Find Full Text PDF