Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transgenic switchgrass overexpressing Lolium perenne L. delta1-pyrroline 5-carboxylate synthase (LpP5CS) in group I (TG4 and TG6 line) and group II (TG1 and TG2 line) had significant P5CS and ProDH enzyme activities, with group I plants (TG4 and TG6) having higher P5CS and lower ProDH enzyme activity, while group II plants had higher ProDH and lower P5CS enzyme activity. We found group II transgenic plants showed stunted growth, and the changed proline content in overexpressing transgenic plants may influence the growth and development in switchgrass. RNA-seq analysis showed that KEGG enrichment included phenylpropanoid biosynthesis pathway among group I, group II and WT plants, and the expression levels of genes related to lignin biosynthesis were significantly up-regulated in group II. We also found that lignin content in group II transgenic plants was higher than that in group I and WT plants, suggesting that increased lignin content may suppress switchgrass growth and development. This study uncover that proline can appropriately reduce lignin biosynthesis to improve switchgrass growth and development. Therefore, appropriate reduction in lignin content and increase in biomass are important for bioenergy crop to lower processing costs for biomass fermentation-derived fuels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934488PMC
http://dx.doi.org/10.1038/s41598-019-56575-9DOI Listing

Publication Analysis

Top Keywords

growth development
16
group plants
16
switchgrass growth
12
lignin biosynthesis
12
transgenic plants
12
lignin content
12
group
10
tg4 tg6
8
prodh enzyme
8
enzyme activity
8

Similar Publications

Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.

Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.

View Article and Find Full Text PDF

Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.

View Article and Find Full Text PDF

Optimization of Nitrogen Application and Root Biomass Modulates 2-Acetyl-1-Pyrroline Biosynthesis in Fragrant Rice.

Physiol Plant

September 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.

The rice root system mediates nutrient uptake while adapting to tillage, management, and environmental changes. While optimized nitrogen (N) supply is known to enhance 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice, the underlying mechanisms linking nitrogen availability, root development, and their combined effects on physiological processes and aroma formation remain unclear. To address this knowledge gap, we conducted a pot experiment employing two fragrant rice cultivars (Huahangxiangyinzhen and Qingxiangyou19xiang) under three nitrogen regimes (0, 1.

View Article and Find Full Text PDF

Electrically Conductive Hydrogels for Wound Healing.

Adv Wound Care (New Rochelle)

September 2025

Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.

Wound healing is a complex, tightly regulated process involving a range of enzymes, growth factors, and cytokines that coordinate cellular activities essential for tissue repair and wound closure. However, in cases of extensive or severe injury, the intrinsic repair mechanisms are often insufficient, underscoring the need for advanced therapeutic strategies to accelerate healing and minimize scar formation. Electrically conductive hydrogels (ECHs), combining the advantageous properties of hydrogels with the physiological and electrochemical characteristics of conductive materials, present a safer and more convenient alternative to traditional electrode-based electrical stimulation (ES) for treating chronic and nonhealing wounds.

View Article and Find Full Text PDF

Background: has been extensively studied for its bioactive components and medicinal properties. This study was carried out to evaluate the fermentation ability of 2.1 yeast to determine suitable fermentation conditions.

View Article and Find Full Text PDF