98%
921
2 minutes
20
Metal oxides can act as insulators, semiconductors, or metals depending on their chemical composition and crystal structure. Metal oxide semiconductors, which support equilibrium populations of electron and hole charge carriers, have widespread applications including batteries, solar cells, and display technologies. It is often difficult to predict in advance whether these materials will exhibit localized or delocalized charge carriers upon oxidation or reduction. We combine data from first-principles calculations of the electronic structure and dielectric response of 214 metal oxides to predict the energetic driving force for carrier localization and transport. We assess descriptors based on the carrier effective mass, static polaron binding energy, and Fröhlich electron-phonon coupling. Numerical analysis allows us to assign p- and n-type transport of a metal oxide to three classes: (i) band transport with high mobility; (ii) small polaron transport with low mobility; and (iii) intermediate behavior. The results of this classification agree with observations regarding carrier dynamics and lifetimes and are used to predict 10 candidate p-type oxides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b03398 | DOI Listing |
Adv Mater
September 2025
College of Smart Materials and Future Energy, and State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200438, China.
Nonfullerene acceptor-based organic solar cells have recently taken a milestone leap with power conversion efficiencies approaching 20%. A key to further boost the efficiencies up to the Shockley-Queisser limit rests upon attaining a delicate balance between exciton dissociation and charge transport. This perspective presents two seminal and reciprocal strategies developed by our group and others to reconcile the intricacy of charge carrier dynamics, spanning from intrinsic molecular structure design to extrinsic dopant exploitation.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
Perovskites have a large number of intrinsic defects and interface defects, which often lead to non-radiative recombination, and thus affect the efficiency of perovskite solar cells (PSCs). Introducing appropriate passivators between the perovskite layer and the transport layer for defect modification is crucial for improving the performance of PSCs. Herein, two positional isomers, 1-naphthylmethylammonium iodide (NMAI) and 2-naphthylmethylammonium iodide (NYAI) are designed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
For optoelectronic devices based on lead-halide perovskites and other semiconductors, a comprehensive understanding of the electric field influences on the carrier transport characteristics is critical to the optimization of their practical performances. To fulfill this challenging goal, here we have employed photoluminescence spatial image and transient absorption microscopy measurements on an individual CsPbBr microplate biased at external voltages in an Au/CsPbBr/Au device. At the subpicosecond time scale, some photogenerated excitons are dissociated into free electrons and holes that drift toward the electrodes to leave behind unfilled defect sites, which are capable of scattering the residual excitons to yield a reduced diffusion coefficient.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry and Biochemistry, Auburn University Auburn Alabama 36849 USA
Organic mixed ionic-electronic conducting polymers remain at the forefront of materials development for bioelectronic device applications. During electrochemical operation, structural dynamics and variations in electrostatic interactions in the polymer occur, which affect dual transport of the ions and electronic charge carriers. Such effects remain unclear due to a lack of spectroscopic methods capable of capturing these dynamics, which hinders the rational design of higher-performance polymers.
View Article and Find Full Text PDFACS Omega
September 2025
Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
For photodetection applications using 3D hybrid perovskites (HPs), dense and thick films or compacted powders in wafer form are needed and generally require large amounts of HPs. HPs are also often combined with a graphene/carbon layer to improve their conductivity. Among HP synthesis methods, mechanosynthesis, a green synthesis method, provides a large amount of powders, which are furthermore easily densified in compact wafers due to their mechanical activation.
View Article and Find Full Text PDF