98%
921
2 minutes
20
Intensification of the dairy industry globally, combined with a changing climate, has placed increased pressure on natural capital assets (and the flow of ecosystem services) on farms. Agroforestry is widely promoted as an intervention to address these issues. While some benefits of integrating trees on farms, such as carbon sequestration and biodiversity, are reasonably well known, less is known about other potential benefits, such as on-farm production. Understanding and quantifying these benefits would inform farm planning and decision-making. We used a systematic review approach to analyse the evidence base for biophysical ecosystem services from woody systems (including shelterbelts, riparian plantings, plantations, pasture trees, silvopasture and remnant native vegetation) provided to grazed dairy enterprises. We identified 83 publications containing 123 records that fit our review criteria of reporting on biophysical ecosystem services from woody systems on dairy farms relative to a grazed pasture comparison. For each relationship between a woody system and ecosystem service, we assessed the level of support, strength and predominant direction of evidence, and summarised the causal relationships (woody system ≫ mechanism ≫ outcome). Shelterbelts and riparian plantings were the most commonly reported woody systems. Linkages between woody systems and ecosystem services were largely positive, with the types of services provided and their importance differing among systems. Mean evaluation scores for the strength of the evidence were moderate to strong. However, the number of records for each relationship was often low. Consequently, only eight of the 30 causal pathways identified had high confidence; a further 14 had medium confidence indicating that these have good potential to deliver benefits but warrant further work. Although the evidence here was largely qualitative, our results provide strong support for the internal benefits that natural capital assets, such as on-farm woody systems, can provide to the productivity and resilience of grazed dairy enterprises.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.135345 | DOI Listing |
J Agric Food Chem
September 2025
College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045,
To discover novel preservatives for treating wood-decaying fungi, 48 novel eugenol quaternary ammonium salt derivatives were designed and synthesized. Among them, compounds , , , , , , and showed remarkable antifungal activity against (), affording EC values ranging from 2.11-7.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, C
This study develops a catalytic system using pyruvic acid (PYA) and Fe to efficiently coproduce xylo-oligosaccharides (XOS) and (manno-oligosaccharides) MOS from food material ( Lam. fruit.) and its waste peel, respectively.
View Article and Find Full Text PDFMol Plant Pathol
September 2025
Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, Universidad de Málaga, Málaga, Spain.
The type III secretion system in Pseudomonas syringae complex pathogens delivers type III effectors (T3Es) into plant cells to manipulate host processes, enhance survival, and promote disease. While substantial research has focused on herbaceous pathogens, T3Es in strains infecting woody hosts are less understood. This study investigates the HopBL family of effectors in Pseudomonas savastanoi, a pathogen of woody plants.
View Article and Find Full Text PDFMegaherbivores are typically regarded as agents of top-down control, limiting woody encroachment through destructive foraging. Yet they also possess traits and engage in behaviours that facilitate plant success. For example, megaherbivores can act as effective endozoochorous seed dispersers.
View Article and Find Full Text PDF