Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rheumatoid arthritis (RA) is characterized by the massive infiltration of various chronic inflammatory cells in synovia. In synovial fluid of patients with RA, M1 macrophages are dominant among all subtypes of macrophages, the mechanisms of macrophages polarization imbalance in RA has not been fully illuminated. The prostaglandin E2 (PGE2) augments M2 polarization in part via the cyclic adenosine monophosphate (cAMP)-cyclic AMP responsive element binding (CREB) signaling. However, previous study found constant stimulus of PGE2 on fibroblast-like synovial cells of adjuvant arthritis rats induced the decrease of cAMP, which is primarily caused by G protein-coupled receptor kinase 2 (GRK2)-induced EP4 over- desensitization. Whether GRK2 mediated-EP4 over-desensitization reduces the level of cAMP and inhibits M2 polarization in RA is unclear. Here we observed M1 macrophages were dominant in peritoneal macrophages (PMs), bone-marrow-derived macrophages (BMMs) and synovial macrophages of collagen-induced arthritis (CIA) mice. PGE2 stimulated M2 polarization via the EP4-cAMP-CREB in normal mice, while failed to promote M2 polarization in the PMs of CIA mice. Further, we found the EP4 over-desensitization stimulated by PGE2 induced abnormal PGE2-cAMP-CREB signaling as well as the imbalance of macrophage polarization. Targeted disruption of GRK2 in Raw264.7 (RAW) through GRK2 siRNA or CRISPR/Cas9 downregulated the M1 macrophage markers, upregulated the M2 macrophage markers and the EP4 membrane localization. The reduced M1/M2 ratio and increased p-CREB expression were observed in BMMs and PMs of GRK2 mice. This study highlighted a novel role of GRK2 in regulating macrophages function in RA and provided new idea for precision treatment of RA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953022PMC
http://dx.doi.org/10.3390/cells8121596DOI Listing

Publication Analysis

Top Keywords

macrophages
9
macrophages polarization
8
collagen-induced arthritis
8
macrophages dominant
8
cia mice
8
macrophage markers
8
polarization
7
grk2
6
mice
5
grk2 mediated
4

Similar Publications

Macrophage cannibalism: efferocytosis in atherosclerosis.

Curr Opin Lipidol

August 2025

Cardiometabolic Immunity Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute (BDI) and Victorian Heart Institute (VHI), Monash University, Melbourne, Victoria, Australia.

Purpose Of Review: This review explores the evolving understanding of efferocytosis - the clearance of dead or dying cells by phagocytes - in the context of atherosclerosis. It highlights recent discovers in cell death modalities, impaired clearance mechanisms and emerging therapeutic strategies aimed at restoring efferocytosis to stabilize plaques and resolve inflammation.

Recent Findings: Recent studies have expanded the scope of efferocytosis beyond apoptotic cells to include other pro-inflammatory cell death modes, including pyroptosis, necroptosis and ferroptosis, revealing context-dependent clearance efficiency and immunological outcomes.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

In obstructive sleep apnea (OSA), repeated airway obstruction alters mucosal inflammation, which increases exhaled nitric oxide (NO) production in the nasal cavity. However, the underlying mechanism remains unclear. Accordingly, we aimed to examine the mechanism underlying NO production in patients with OSA.

View Article and Find Full Text PDF

Esophageal cancer is a major cause of cancer-related death, often preceded with chronic inflammation and injuries. The NFκB/IKKβ pathway plays a central role in inflammation, yet its role in early esophageal carcinogenesis remains unclear. This study investigated the role of epithelial IKKβ in early esophageal carcinogenesis.

View Article and Find Full Text PDF

Microfluidic Microspheres Loaded with Aggregation-Induced Emission Nanomicelles for Theranostic Applications in Osteoarthritis.

Adv Healthc Mater

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.

Osteoarthritis (OA) is a common degenerative joint disease, and early diagnosis and effective treatment are essential for managing its progression. This study focuses on the development of a novel drug delivery system using aggregation-induced emission (AIE) probe for enhanced fluorescence imaging and targeted therapy in OA. TPE-S-BTD, an AIE probe, is synthesized and characterized for its photophysical properties, demonstrating significant aggregation-induced fluorescence enhancement.

View Article and Find Full Text PDF