98%
921
2 minutes
20
Multiplexed refactoring provides a tool for rapid transcriptional optimization of biosynthetic gene clusters (BGCs) through simultaneous replacement of multiple native promoters with synthetic counterparts. Here, we present the mpCRISTAR, a multiple plasmid-based CRISPR/Cas9 and TAR (transformation-associated recombination), that enables a rapid and highly efficient, multiplexed refactoring of natural product BGCs in yeast. A series of CRISPR plasmids with different auxotrophic markers that could be stably maintained in yeast cells were constructed to express multiple gRNAs simultaneously. We demonstrated the multiplexing capacity of mpCRISTAR using the actinorhodin biosynthetic gene cluster as a model cluster. mpCRISTAR1, in which each CRISPR plasmid expresses one gRNA, allows for simultaneous replacement of up to four promoter sites with nearly 100% efficiency. By expressing two gRNAs from one CRISPR plasmid, termed mpCRISTAR2, we simultaneously replaced a total of six and eight promoter sites with 68% and 32% efficiency, respectively. The mpCRISTAR could be performed iteratively using two different auxotrophic markers, allowing for refactoring of any type of BGC regardless of their operon complexities. The mpCRISTAR platform we report here would become a useful tool for the discovery of new natural products from transcriptionally silent biosynthetic gene clusters present in microbial genomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.9b00382 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFEur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFDiagn Pathol
September 2025
Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.
View Article and Find Full Text PDFBMC Mol Cell Biol
September 2025
School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.
View Article and Find Full Text PDFJ Mol Histol
September 2025
Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China.
The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.
View Article and Find Full Text PDF