98%
921
2 minutes
20
Background: Large insert paired-end sequencing technologies are important tools for assembling genomes, delineating associated breakpoints and detecting structural rearrangements. To facilitate the comprehensive detection of inter- and intra-chromosomal structural rearrangements or variants (SVs) and complex genome assembly with long repeats and segmental duplications, we developed a new method based on single-molecule real-time synthesis sequencing technology for generating long paired-end sequences of large insert DNA libraries.
Results: A Fosmid vector, pHZAUFOS3, was developed with the following new features: (1) two 18-bp non-palindromic ISceI sites flank the cloning site, and another two sites are present in the skeleton of the vector, allowing long DNA inserts (and the long paired-ends in this paper) to be recovered as single fragments and the vector (~ 8 kb) to be fragmented into 2-3 kb fragments by I-SceI digestion and therefore was effectively removed from the long paired-ends (5-10 kb); (2) the (Cm) resistance gene and replicon (V), necessary for colony growth, are located near the two sides of the cloning site, helping to increase the proportion of the paired-end fragments to single-end fragments in the paired-end libraries. Paired-end libraries were constructed by ligating the size-selected, mechanically sheared pooled Fosmid DNA fragments to the (Amp) resistance gene fragment and screening the colonies with Cm and Amp. We tested this method on yeast and Yugu1. Fosmid-size paired-ends with an average length longer than 2 kb for each end were generated. The N50 scaffold lengths of the de novo assemblies of the yeast and Yugu1 genomes were significantly improved. Five large and five small structural rearrangements or assembly errors spanning tens of bp to tens of kb were identified in Yugu1 including deletions, inversions, duplications and translocations.
Conclusions: We developed a new method for long paired-end sequencing of large insert libraries, which can efficiently improve the quality of de novo genome assembly and identify large and small structural rearrangements or assembly errors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878638 | PMC |
http://dx.doi.org/10.1186/s13007-019-0525-6 | DOI Listing |
J Assist Reprod Genet
September 2025
UFR-SVS, UVSQ, 78180, Montigny Le Bretonneux, France.
Introduction: Complex chromosomal rearrangements (CCRs) are frequently associated with infertility and have been described in the literature. Chromoanagenesis corresponds to a group of CCRs with a high number of chromosome breakpoints. These CCRs involving small structural variations can only be identified by using high-resolution genomic techniques.
View Article and Find Full Text PDFBiomaterials
September 2025
Department of Biomedical Engineering, Program in Genetic Drug Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. Electronic address:
Modular lipid nanoparticles (LNPs) are a promising platform to deliver mRNA to various tissues and cells. Optimization of LNPs for hepatic and extrahepatic tissues often involves substitution of helper lipids or addition of novel lipids not found in conventional four-component LNPs. Among the lipids that comprise LNPs, the functional contributions of phospholipids (PLs) in selective organ targeting (SORT) LNPs remain poorly understood.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
We have observed the signatures of valence electron rearrangement in photoexcited ammonia using ultrafast hard x-ray scattering. Time-resolved x-ray scattering is a powerful tool for imaging structural dynamics in molecules because of the strong scattering from the core electrons localized near each nucleus. Such core-electron contributions generally dominate the differential scattering signal, masking any signatures of rearrangement in the chemically important valence electrons.
View Article and Find Full Text PDFCell Rep
September 2025
Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4K
Many Gram-negative bacteria use type VI secretion systems (T6SSs) to deliver toxic effector proteins into neighboring cells. Proteins in the VasX toxin family form ion-permeable channels in the bacterial cytoplasmic membrane that dissipate the proton motive force, thereby interfering with essential physiological processes. However, the structure of any VasX family effector has remained unknown.
View Article and Find Full Text PDFNat Prod Rep
September 2025
State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China.
Covering: up to April 2025Bacterial aromatic polyketides represent a notable class of natural products that have found extensive applications in clinical treatments. In their biosynthesis, oxidative rearrangements represent critical transformations that typically afford diverse scaffolds, structural rigidity, and biological activities. In this context, it is evident that redox enzymes are frequently implicated in various rearrangement processes, whereby they facilitate the transformation of pathway precursors into mature natural products.
View Article and Find Full Text PDF