Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Triple-negative breast cancer (TNBC) is a heterogeneous group of breast cancer and is characterized by aggressiveness and poor prognosis. MicroRNA represents a new class of biomarkers, and accumulating evidence indicates that microRNAs contribute to tumorigenesis and cancer metastasis. It has been described that miR-210 is highly expressed in TNBC, and its overexpression had been linked to poor prognosis. In a previous work, we showed that in TNBC miR-210 is expressed in tumor cells and also in the tumor microenvironment (TME), particularly in inflammatory CD45-LCA positive cells. However, the exact identity of these cells remained unknown. In this study, we performed in situ hybridization and immunohistochemistry using validated antibodies for the different specific immune cell markers on adjacent sections of 23 TNBC infiltrated with immune cells. We found that miR-210 expressing cells in the TME were stained positive with CD79a, a B-cell lineage marker. These tumor-infiltrating cells were negative for CD20 and Ki-67 but positive for MUM1 and CD38 and also expressed immunoglobulins, indicating that they are immunoglobulin-producing plasma cells (PCs). To the best of our knowledge, this is the first study demonstrating miR-210 expression in tumor-infiltrating PCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931165PMC
http://dx.doi.org/10.1369/0022155419892965DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
cells
8
plasma cells
8
triple-negative breast
8
poor prognosis
8
mir-210
5
mir-210 overexpressed
4
overexpressed tumor-infiltrating
4
tumor-infiltrating plasma
4
cells triple-negative
4

Similar Publications

Introduction: Cutaneous scalp metastases from breast carcinoma (CMBC) represent an uncommon manifestation of metastatic disease, with heterogeneous clinical presentations, including nodular or infiltrative lesions and scarring alopecia (alopecia neoplastica). The absence of standardized diagnostic criteria, particularly for alopecic phenotypes, poses challenges to early recognition of CMBC, which may represent either the first indication of neoplastic progression or a late recurrence.

Materials And Methods: We retrospectively analyzed a multicenter cohort of 15 patients with histologically confirmed CMBC.

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.

View Article and Find Full Text PDF

Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.

View Article and Find Full Text PDF