98%
921
2 minutes
20
Lexical-semantic retrieval emerges through the interactions of distributed prefrontal and perisylvian brain networks. Growing evidence suggests that synchronous theta band neural oscillations might play a role in this process, yet, their functional significance remains elusive. Here, we used transcranial alternating current stimulation to induce exogenous theta oscillations at 6 Hz (θ-tACS) over left prefrontal and posterior perisylvian cortex with a 180° (anti-phase) and 0° (in-phase) relative phase difference while participants performed automatic and controlled retrieval tasks. We demonstrate that θ-tACS significantly modulated the retrieval performance and its effects were both task- and phase-specific: the in-phase tACS impaired controlled retrieval, whereas the anti-phase tACS improved controlled but impaired automatic retrieval. These findings indicate that theta band oscillatory brain activity supports binding of semantically related representations via a phase-dependent modulation of semantic activation or maintenance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881370 | PMC |
http://dx.doi.org/10.1038/s41598-019-53813-y | DOI Listing |
J Neurophysiol
September 2025
Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307 Dresden, Germany.
Cognitive control - the ability to regulate information processing in line with current goals - is essential for cognitive functioning. We examined whether uncertainty in cognitive control demands leads to higher processing of cues that reduce uncertainty. Participants completed a Go/NoGo task with two NoGo:Go ratios (4:5 and 1:6).
View Article and Find Full Text PDFDev Sci
November 2025
Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
Cognitive control shows two main developmental trends: greater self-directedness (i.e., children need less external scaffolding) and greater proactiveness (i.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
CIBA Center for Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, 76010 Querétaro, México.
Background: Neurofibrillary tangles, composed of hyperphosphorylated tau, have been implicated in the cognitive impairments observed in Alzheimer's disease. While the precise mechanism remains elusive, cognitive deficits in Alzheimer's disease have been associated with disrupted brain network activity. To investigate this mechanism, researchers have developed several tau transgenic models.
View Article and Find Full Text PDFFront Cell Neurosci
August 2025
Memory Research Laboratory, Brain Institute and Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil.
Object recognition memory (ORM) allows animals to distinguish between novel and familiar items. When reactivated during recall in the presence of a novel object, a consolidated ORM can be destabilized and linked to that generated by the novel object through reconsolidation. The CA1 region of the dorsal hippocampus contributes to ORM destabilization and reconsolidation, with mechanisms involving theta/gamma cross-frequency coupling (hPAC) and synaptic plasticity modulation.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
August 2025
Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China.
Purpose: This study aimed to explore the effects of Electroacupuncture (EA) at the Zusanli (ST36) point on Irritable Bowel Syndrome (IBS), along with its associated visceral hypersensitivity and anxiety-like behaviors.
Methods: To establish the IBS rat model, Water Avoidance Stress (WAS) was used. After successful modeling, rats were randomly divided into four groups: Normal group, IBS group, ST36 group, and Sham EA group.