Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A common technique used to differentiate bacterial species and to determine evolutionary relationships is sequencing their 16S ribosomal RNA genes. However, this method fails when organisms exhibit high similarity in these sequences. Two such strains that have identical 16S rRNA sequences are Mycobacterium indicus pranii (MIP) and Mycobacterium intracellulare. MIP is of significance as it is used as an adjuvant for protection against tuberculosis and leprosy; in addition, it shows potent anti-cancer activity. On the other hand, M. intracellulare is an opportunistic pathogen and causes severe respiratory infections in AIDS patients. It is important to differentiate these two bacterial species as they co-exist in immuno-compromised individuals. To unambiguously distinguish these two closely related bacterial strains, we employed Raman and resonance Raman spectroscopy in conjunction with multivariate statistical tools. Phenotypic profiling for these bacterial species was performed in a kinetic manner. Differences were observed in the mycolic acid profile and carotenoid pigments to show that MIP is biochemically distinct from M. intracellulare. Resonance Raman studies confirmed that carotenoids were produced by both MIP as well as M. intracellulare, though the latter produced higher amounts. Overall, this study demonstrates the potential of Raman spectroscopy in differentiating two closely related mycobacterial strains. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-019-02197-zDOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
bacterial species
12
closely bacterial
8
bacterial strains
8
mycobacterium indicus
8
indicus pranii
8
mycobacterium intracellulare
8
differentiate bacterial
8
resonance raman
8
raman
5

Similar Publications

Impaired muscle regrowth in aging is underpinned by reduced pro-inflammatory macrophage function and subsequently impaired muscle cellular remodeling. Macrophage phenotype is metabolically controlled through TCA intermediate accumulation and activation of HIF1A. We hypothesized that transient hypoxia following disuse in old mice would enhance macrophage metabolic inflammatory function thereby improving muscle cellular remodeling and recovery.

View Article and Find Full Text PDF

Constructing Ni(OH) nanosheets on a nickel foam electrode for efficient electrocatalytic ethanol oxidation.

Dalton Trans

September 2025

Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.

The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.

View Article and Find Full Text PDF

High-Pressure Synthesis and Characterization of the Novel Potassium Superhydride KH.

J Phys Chem Lett

September 2025

Center for Science at Extreme Conditions (CSEC) and the School of Physics and Astronomy, The University of Edinburgh, EH9 3JZ Edinburgh, United Kingdom.

Through high-pressure diamond anvil cell experiments, we report the synthesis of two novel potassium superhydrides (KH-I and KH-II) and investigate their structural and vibrational properties via synchrotron X-ray powder diffraction and Raman spectroscopy, complemented by density functional theory (DFT) calculations. Above 17 GPa at room temperature, KH-II and H react to form KH-I; this reaction can be accelerated with temperature. KH-I possesses a face-centered-cubic () potassium sublattice with a slight rhombohedral distortion (space group 3̅).

View Article and Find Full Text PDF

Noninvasive Monitoring of Blood Glucose With In Vivo Raman Spectroscopy.

J Biophotonics

September 2025

Institute of Photonics and Photon-Technology, Northwest University, Xi'an, China.

Non-invasive glucose monitoring using Raman spectroscopy with 830 nm excitation presents a promising alternative to traditional fingerstick methods for diabetes management research. An integrated in vivo Raman system enables transcutaneous glucose detection and has demonstrated robust performance in oral glucose tolerance tests (OGTT), validating its reliability. Inter-subject correlation between spectral features and glucose concentration was addressed by the intensity of the fingerprint peak (I), peak intensity ratio (I/I), and the spectral area ratio (S/S), whose correlation coefficient (R) was 0.

View Article and Find Full Text PDF

Fruit and fruit-based products are a valuable source of essential nutrients, critical for food security, and drive economic productivity with minimal inputs. The significant rise in global demand for high-quality imported fruit and fruit-based products reflects a shift in consumer awareness and interest in the products origin and potential health-promoting bioactive compounds. Analytical techniques such as liquid chromatography, gas chromatography, inductively coupled plasma techniques, isotope-ratio mass spectrometry (IRMS), near infrared (NIR) spectroscopy, visible near infrared (VIS-NIR) spectroscopy, hyperspectral imaging (HSI), mid-infrared (MIR) spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, terahertz spectroscopy, dielectric spectroscopy, electronic nose (e-nose), and electronic tongue (e-tongue) coupled with supervised and unsupervised chemometrics can be employed for traceability, authentication, and bioactive profiling of fruit and fruit-based products.

View Article and Find Full Text PDF