Caulobacter crescentus β sliding clamp employs a noncanonical regulatory model of DNA replication.

FEBS J

Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.

Published: June 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The eubacterial β sliding clamp (DnaN) plays a crucial role in DNA metabolism through direct interactions with DNA, polymerases, and a variety of protein factors. A canonical protein-DnaN interaction has been identified in Escherichia coli and some other species, during which protein partners are tethered into the conserved canonical hydrophobic crevice of DnaN via the consensus β-binding motif. Caulobacter crescentus is an excellent research model for use in the investigation of DNA replication and cell-cycle regulation due to its unique asymmetric cell division pattern with restricted replication initiation; however, little is known about the specific features of C. crescentus DnaN (CcDnaN). Here, we report a significant divergence in the association of CcDnaN with proteins based on docking analysis and crystal structures that show that the β-binding motifs of its protein partners bind a novel pocket instead of the canonical site. Pull-down and isothermal titration calorimetry results revealed that mutations within the novel pocket disrupt protein-CcDnaN interactions. It was also shown by replication and regulatory inactivation of DnaA assays that mediation of protein interaction by the novel pocket is closely related to the performance of CcDnaN during replication and the DnaN-mediated regulation process. Moreover, assessments of clamp competition showed that DNA does not compete with protein partners when binding to the novel pocket. Overall, our structural and biochemical analyses provide strong evidence that CcDnaN employs a noncanonical protein association pattern.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.15138DOI Listing

Publication Analysis

Top Keywords

novel pocket
16
protein partners
12
sliding clamp
8
employs noncanonical
8
dna replication
8
protein
6
dna
5
replication
5
caulobacter crescentus sliding
4
clamp employs
4

Similar Publications

Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor-associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket causes preferential cell death in Rbhigh M2 polarized or M2-like Rbhigh immunosuppressive TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways.

View Article and Find Full Text PDF

Introduction: In the past decade, the management of advanced prostate cancer has shifted to novel hormonal therapies. As a result, urologists have increased their involvement in the management of advanced prostate cancer. These therapies require close monitoring due to the possibility of adverse cardiometabolic events.

View Article and Find Full Text PDF

Gene hunting and semi-rational design of β-xylosidase from Aspergillus aculeatus for highly efficient hydrolysis of astragaloside.

J Biotechnol

September 2025

School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO. 1, Wenyuan Road, Nanjing 210023, People's Republic of China. Electronic address:

Cycloastragenol (CA), the triterpenoid aglycone of astragaloside (ASI), is a telomerase activator and potential anti-aging drug with broad application prospects. Due to the rapid increase of its market demand in recent years, efficient production of CA has attracted increasing attention. In this study, the novel β-xylosidase XylO2 from Aspergillus aculeatus was identified through genome mining.

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF

The TRPA1 channel has recently emerged as a critical target for pain relief since its antagonists target the beginning of the pain transduction pathway and, thus, are devoid of side effects such as sedation, dizziness, somnolence, or cognitive impairment. Despite this clinical significance, currently, no TRPA1 inhibitors suitable for therapeutic usage exist to target these channels. Since ancient times, natural products have been known to be a rich source of new drugs, useful therapeutic agents, as well as pharmacological tools.

View Article and Find Full Text PDF