Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Multiple sclerosis (MS) affects both brain and spinal cord. However, studies of the neuraxis with advanced magnetic resonance imaging (MRI) are rare because of long acquisition times. We investigated neurodegeneration in MS brain and cervical spinal cord using neurite orientation dispersion and density imaging (NODDI).

Objective: The aim of this study was to investigate possible alterations, and their clinical relevance, in neurite morphology along the brain and cervical spinal cord of relapsing-remitting MS (RRMS) patients.

Methods: In total, 28 RRMS patients and 20 healthy controls (HCs) underwent brain and spinal cord NODDI at 3T. Physical and cognitive disability was assessed. Individual maps of orientation dispersion index (ODI) and neurite density index (NDI) in brain and spinal cord were obtained. We examined differences in NODDI measures between groups and the relationships between NODDI metrics and clinical scores using linear regression models adjusted for age, sex and brain tissue volumes or cord cross-sectional area (CSA).

Results: Patients showed lower NDI in the brain normal-appearing white matter (WM) and spinal cord WM than HCs. In patients, a lower NDI in the spinal cord WM was associated with higher disability.

Conclusion: Reduced neurite density occurs in the neuraxis but, especially when affecting the spinal cord, it may represent a mechanism of disability in MS.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1352458519885107DOI Listing

Publication Analysis

Top Keywords

spinal cord
36
neurite density
12
brain cervical
12
cervical spinal
12
brain spinal
12
cord
10
spinal
9
reduced neurite
8
brain
8
cord relapsing-remitting
8

Similar Publications

Purpose: This study aimed to investigate the relationship between tissue bridges and bladder and bowel outcomes in chronic cervical spinal cord injury (SCI).

Methods: Between July 2020 and January 2024, 44 patients with chronic cervical SCI were retrospectively included in this cross-sectional study at a specialized SCI center. Lesion severity was assessed by tissue bridges, lesion length, lesion width, and lesion area.

View Article and Find Full Text PDF

Astrocytic monoamine oxidase B (MAOB)-gamma-aminobutyric acid (GABA) axis as a molecular brake on repair following spinal cord injury.

Signal Transduct Target Ther

September 2025

Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.

Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.

View Article and Find Full Text PDF

The white matter of the spinal cord is essential for sensory and motor signaling, and its proper development is crucial for establishing functional neuronal circuits. However, the mechanisms underlying white matter formation remain incompletely understood. We hypothesized that the extracellular matrix, particularly laminins, plays a key role in this process.

View Article and Find Full Text PDF

Pompe disease is an autosomal recessive neuromuscular disorder characterized by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for lysosomal glycogen degradation in all cells. Respiratory distress is a common symptom among patients with Pompe disease resulting from weakness of primary respiratory neuromuscular units of the diaphragm and genioglossus and the motor neurons which innervate them. The only FDA approved treatment is enzyme replacement therapy (ERT) of recombinant human GAA (rhGAA) which slows the decline of motor function and extends life expectancy.

View Article and Find Full Text PDF

Cross-linked genes analysis of programmed cell death and network pharmacological validation after spinal cord injury.

Biochem Biophys Res Commun

August 2025

Department of othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Me

Programmed cell death (PCD), which describes cell death regulated by a sequence of gene expression events, strongly impacts the prognosis of spinal cord injury (SCI). Nevertheless, the connections between the various PCD types and the cross-linked genes regulate that these types of cell death in SCI remain unclear. This study sought to identify and investigate the key genes connections that regulated PCD in SCI.

View Article and Find Full Text PDF