98%
921
2 minutes
20
Cellular senescence is a stress response that limits the proliferation of damaged cells by establishing a permanent cell cycle arrest. Different stimuli can trigger senescence but excessive production or impaired clearance of these cells can lead to their accumulation during aging with deleterious effects. Despite this potential negative side of cell senescence, its physiological role as a pro-regenerative and morphogenetic force has emerged recently after the identification of programmed cell senescence during embryogenesis and during wound healing and limb regeneration. Here, we explored the conservation of tissue injury-induced senescence in a model of complex regeneration, the zebrafish. Fin amputation in adult fish led to the appearance of senescent cells at the site of damage, and their removal impaired tissue regeneration. Despite many conceptual similarities, this tissue repair response is different from developmental senescence. Our results lend support to the notion that cell senescence is a positive response promoting tissue repair and homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974711 | PMC |
http://dx.doi.org/10.1111/acel.13052 | DOI Listing |
Mol Biol Rep
September 2025
Phytoveda Pvt. Ltd, Mumbai, 400022, India.
Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.
Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.
Biomed Environ Sci
August 2025
School of public health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, Hebei China.
J Cell Physiol
September 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.
View Article and Find Full Text PDFEndocr Rev
September 2025
Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
Glycerol and glycerol-3-phosphate are key metabolites at the intersection of carbohydrate, lipid and energy metabolism. Their production and usage are organismal and cell type specific. Glycerol has unique physicochemical properties enabling it to function as an osmolyte, protein structure stabilizer, antimicrobial and antifreeze agent, important to preservation of many biological functions.
View Article and Find Full Text PDFKardiologiia
September 2025
National Medical Research Center for Therapy and Preventive Medicine, Moscow.
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia, the prevalence of which increases with age. Slowing down senescence is one of the urgent challenges of modern science. Therefore, it is important to identify individuals with markers of premature cellular senescence for further development of pharmacological agents capable of slowing it.
View Article and Find Full Text PDF