98%
921
2 minutes
20
Qingke (Tibetan hulless barley) has long been cultivated and exposed to long-term and strong UV-B radiation on the Tibetan Plateau, which renders it an ideal species for elucidating novel UV-B responsive mechanisms in plants. Here we report a comprehensive metabolite profiling and metabolite-based genome-wide association study (mGWAS) using 196 diverse qingke and barley accessions. Our results demonstrated both constitutive and induced accumulation, and common genetic regulation, of metabolites from different branches of the phenylpropanoid pathway that are involved in UV-B protection. A total of 90 significant mGWAS loci for these metabolites were identified in barley-qingke differentiation regions, and a number of high-level metabolite trait alleles were found to be significantly enriched in qingke, suggesting co-selection of various phenylpropanoids. Upon dissecting the entire phenylpropanoid pathway, we identified some key determinants controlling natural variation of phenylpropanoid content, including three novel proteins, a flavone C-pentosyltransferase, a tyramine hydroxycinnamoyl acyltransferase, and a MYB transcription factor. Our study, furthermore, demonstrated co-selection of both constitutive and induced phenylpropanoids for UV-B protection in qingke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molp.2019.10.009 | DOI Listing |
Pestic Biochem Physiol
November 2025
School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China. Electronic add
Metarhizium acridum is a typical filamentous fungus that has been widely used to control grasshoppers, locusts, and crickets. Genetic engineering is a common strategy to enhance its virulence, conidiation, and stress tolerance. Here, we report that the M.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, Chin
Ultraviolet-B (UV-B) light, a natural component of sunlight, plays a crucial role in the regulation of plant growth and development. B-box (BBX) proteins are zinc-finger transcription factors essential for plant growth, development, and responses to abiotic stress. The role of BBX5 in UV-B stress responses has not been previously identified.
View Article and Find Full Text PDFPhysiol Plant
September 2025
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
Climate-driven abiotic stresses, responsible for approximately 50% of global crop yield losses, are putting agriculture under increasing pressure, demanding smarter ways to strengthen plants' natural defenses beyond genetic modification. Hydrogen peroxide (HO), long recognized as a key signaling molecule, plays a powerful role in helping plants cope with environmental stress. This review deciphers the mechanistic basis of HO-mediated capacity enhancement under diverse stresses (drought, salinity, heavy metals, heat, cold) while also addressing climate-intensified challenges like waterlogging and ultraviolet (UV) radiation.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2025
Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m·d was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and quantitative fluorescence PCR validation, this study preliminarily elucidated the physiological mechanisms of plant-specific peroxidase (POD) in responding to enhanced UV-B radiation stress. Enhanced UV-B treatment significantly inhibited biological tissue growth, particularly during the rapid growth stage.
View Article and Find Full Text PDFSci Rep
August 2025
Bordeaux University, CNRS, IMS Laboratory, UMR5218, 33400, Talence, France.
The rapid deployment of fifth-generation (5G) wireless networks has raised societal concerns regarding potential biological effects, particularly on human skin, due to the use of higher carrier frequencies that penetrate tissue less deeply. Consequently, whether 5G-modulated radiofrequency (RF) electromagnetic fields (EMFs) at 3.5 GHz affect oxidative stress and DNA repair in skin cells remains an open question.
View Article and Find Full Text PDF