98%
921
2 minutes
20
Objective: Enteroendocrine cells (EECs) of the gastro-intestinal tract sense gut luminal factors and release peptide hormones or serotonin (5-HT) to coordinate energy uptake and storage. Our goal is to decipher the gene regulatory networks controlling EECs specification from enteroendocrine progenitors. In this context, we studied the role of the transcription factor Rfx6 which had been identified as the cause of Mitchell-Riley syndrome, characterized by neonatal diabetes and congenital malabsorptive diarrhea. We previously reported that Rfx6 was essential for pancreatic beta cell development and function; however, the role of Rfx6 in EECs differentiation remained to be elucidated.
Methods: We examined the molecular, cellular, and metabolic consequences of constitutive and conditional deletion of Rfx6 in the embryonic and adult mouse intestine. We performed single cell and bulk RNA-Seq to characterize EECs diversity and identify Rfx6-regulated genes.
Results: Rfx6 is expressed in the gut endoderm; later, it is turned on in, and restricted to, enteroendocrine progenitors and persists in hormone-positive EECs. In the embryonic intestine, the constitutive lack of Rfx6 leads to gastric heterotopia, suggesting a role in the maintenance of intestinal identity. In the absence of intestinal Rfx6, EECs differentiation is severely impaired both in the embryo and adult. However, the number of serotonin-producing enterochromaffin cells and mucosal 5-HT content are increased. Concomitantly, Neurog3-positive enteroendocrine progenitors accumulate. Combined analysis of single-cell and bulk RNA-Seq data revealed that enteroendocrine progenitors differentiate in two main cell trajectories, the enterochromaffin (EC) cells and the Peptidergic Enteroendocrine (PE) cells, the differentiation programs of which are differentially regulated by Rfx6. Rfx6 operates upstream of Arx, Pax6 and Isl1 to trigger the differentiation of peptidergic EECs such as GIP-, GLP-1-, or CCK-secreting cells. On the contrary, Rfx6 represses Lmx1a and Tph1, two genes essential for serotonin biosynthesis. Finally, we identified transcriptional changes uncovering adaptive responses to the prolonged lack of enteroendocrine hormones and leading to malabsorption and lower food efficiency ratio in Rfx6-deficient mouse intestine.
Conclusion: These studies identify Rfx6 as an essential transcriptional regulator of EECs specification and shed light on the molecular mechanisms of intestinal failures in human RFX6-deficiencies such as Mitchell-Riley syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728766 | PMC |
http://dx.doi.org/10.1016/j.molmet.2019.08.007 | DOI Listing |
Front Nutr
July 2025
Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany.
Human milk serves as a transmitter for epigenetic programming involved in postnatal tissue development and organ maturation of the infant. In contrast to formula feeding (FF), prolonged breastfeeding (BF) has been associated with diabetes-preventive effects. Polymorphisms of the transcription factor 7-like 2 (TCF7L2), the key downstream effector of Wingless (Wnt) signaling, increase the risk of diabetes mellitus.
View Article and Find Full Text PDFSci Rep
July 2025
The Laboratory for Mucosal Ecosystem Design, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Gunma, Japan.
The large intestine has a dense milieu of indigenous bacteria, generating a complex ecosystem with crosstalk between individual bacteria and host cells. In vitro host cell modeling and bacterial interactions at the anaerobic interphase have elucidated the crosstalk molecular basis. Although classical cell lines derived from patients with colorectal cancer including Caco-2 are used, whether they adequately mimic normal colonic epithelial physiology is unclear.
View Article and Find Full Text PDFbioRxiv
May 2025
Department of Medicine, Division of Digestive Diseases, Emory University. Atlanta, GA USA.
Intestinal stem cells (ISCs) balance self-renewal and differentiation to maintain the intestinal epithelial barrier, which is replaced weekly throughout adult life. Genetic control of ISC differentiation is well-defined relative to transcription factor (TF) activity, but less is known regarding the role of chromatin regulation in ISC biology. Prior work from our lab and others has shown that , a chromatin modifying enzyme involved in DNA demethylation, is specifically enriched in ISCs and early secretory progenitors.
View Article and Find Full Text PDFNat Immunol
June 2025
Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
The immune-epithelial-stromal interactions underpinning intestinal damage in celiac disease (CD) are incompletely understood. To address this, we performed single-cell transcriptomics (RNA sequencing; 86,442 immune, parenchymal and epithelial cells; 35 participants) and spatial transcriptomics (20 participants) on CD intestinal biopsy samples. Here we show that in CD, epithelial populations shifted toward a progenitor state, with interferon-driven transcriptional responses, and perturbation of secretory and enteroendocrine populations.
View Article and Find Full Text PDFCell Rep
March 2025
School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK. Electronic address:
Multipotent adult stem cells balance self-renewal with differentiation into various cell types. How this balance is regulated at the transcriptional level is poorly understood. Here, we show that a network of basic helix-loop-helix (bHLH) transcription factors controls both stemness and bipotential differentiation in the Drosophila adult intestine.
View Article and Find Full Text PDF