A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A bHLH interaction code controls bipotential differentiation and self-renewal in the Drosophila gut. | LitMetric

A bHLH interaction code controls bipotential differentiation and self-renewal in the Drosophila gut.

Cell Rep

School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multipotent adult stem cells balance self-renewal with differentiation into various cell types. How this balance is regulated at the transcriptional level is poorly understood. Here, we show that a network of basic helix-loop-helix (bHLH) transcription factors controls both stemness and bipotential differentiation in the Drosophila adult intestine. We find that homodimers of Daughterless (Da), a homolog of mammalian E proteins, maintain self-renewal of intestinal stem cells (ISCs), antagonizing the enteroendocrine fate promoted by heterodimers of Da and Scute (Sc; homolog of ASCL). The HLH factor Extramacrochaetae (Emc; homologous to Id proteins) promotes absorptive differentiation by titrating Da and Sc. Emc prevents the committed absorptive progenitor from dedifferentiating, underscoring the plasticity of these cells. Switching physical interaction partners in this way enables the active maintenance of stemness while priming stem cells for differentiation along two alternative fates. Such regulatory logic is likely operative in other bipotent stem cell systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2025.115398DOI Listing

Publication Analysis

Top Keywords

stem cells
12
bipotential differentiation
8
differentiation
5
bhlh interaction
4
interaction code
4
code controls
4
controls bipotential
4
differentiation self-renewal
4
self-renewal drosophila
4
drosophila gut
4

Similar Publications