98%
921
2 minutes
20
Flexible piezoelectric acoustic sensors have been developed to generate multiple sound signals with high sensitivity, shifting the paradigm of future voice technologies. Speech recognition based on advanced acoustic sensors and optimized machine learning software will play an innovative interface for artificial intelligence (AI) services. Collaboration and novel approaches between both smart sensors and speech algorithms should be attempted to realize a hyperconnected society, which can offer personalized services such as biometric authentication, AI secretaries, and home appliances. Here, representative developments in speech recognition are reviewed in terms of flexible piezoelectric materials, self-powered sensors, machine learning algorithms, and speaker recognition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201904020 | DOI Listing |
Prog Mol Biol Transl Sci
September 2025
Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. Electronic address:
Monitoring skeletal muscle contraction provides valuable information about the muscle mechanical properties, which can be helpful in various biomedical applications. This chapter presents a single-element flexible and wearable ultrasonic sensor (WUS) developed by our research group and its application for continuously monitoring and characterizing skeletal muscle contraction. The WUS is made from a 110-µm thick polyvinylidene fluoride piezoelectric polymer film.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China.
A novel structure of a piezoelectric stick-slip actuator is proposed, which is based on the moving posture of a monkey. The biomimetic monkey type of piezoelectric stick-slip actuator (BMPSSA) is designed to simulate the limbs and tail of a moving monkey. By using the pseudo-rigid body method, the deformation model of the compliant mechanism is established.
View Article and Find Full Text PDFThe functionalization of thin, flexible glass with piezoelectric oxides is a pathway toward transparent electromechanical devices. The crystallization of lead zirconate titanate thin films on thick, rigid glass is previously demonstrated using flash lamp annealing to selectively anneal the films, without damaging the substrates. In this work, a 2-step process suitable for Schott AF 32 eco glass and Corning Willow glass is developed, both 100 μm thick, the latter of which is compatible with roll-to-roll processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Core Manufacturing Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
The direct deposition of piezoelectric ceramic thin films onto metal foils has become a significant challenge due to the increasing demand for embedded decoupling capacitors, nanogenerators, and flexible piezo-sensors. However, traditional thermal sintering (TS) methods present several issues for metal foils, including alterations in mechanical properties, the formation of wrinkles, and the need for precise control over the sintering atmosphere to prevent oxidation. In this study, we successfully crystallized BaTiO on a Ni foil under atmospheric conditions, mitigating thermal damage to the foil through a hybrid-solution-incorporated photoassisted chemical solution deposition (HS-PCSD) method.
View Article and Find Full Text PDFACS Appl Electron Mater
August 2025
Department of Engineering, Durham University, DH1 3LE Durham, U.K.
As wearable electronics advance, there is a growing need for flexible sensors with high sensitivity to detect even the slightest mechanical stimuli for real-time monitoring across various applications. This study presents a poly-(vinylidene fluoride--trifluoroethylene) (PVDF-TrFE)-based flexible piezoelectric sensor, developed by electrospinning a composite of PVDF-TrFE and barium titanate (BaTiO). The PVDF-TrFE with 3 wt % BaTiO, referred to as PVDF-TrFE (3 wt % BTO), exhibits higher crystallinity, increased β-phase content, and enhanced piezoelectric response, achieving a pressure sensitivity of 0.
View Article and Find Full Text PDF