Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Cardiovascular Implantable Electronic Devices (CIEDs) are used extensively for treating life-threatening conditions such as bradycardia, atrioventricular block and heart failure. The complicated heterogeneous physical dynamics of patients provide distinct challenges to device development and validation. We address this problem by proposing a device testing framework within the in-silico closed-loop context of patient physiology.

Methods: We develop an automated framework to validate CIEDs in closed-loop with a high-level physiologically based computational heart model. The framework includes test generation, execution and evaluation, which automatically guides an integrated stochastic optimization algorithm for exploration of physiological conditions.

Conclusion: The results show that using a closed loop device-heart model framework can achieve high system test coverage, while the heart model provides clinically relevant responses. The simulated findings of pacemaker mediated tachycardia risk evaluation agree well with the clinical observations. Furthermore, we illustrate how device programming parameter selection affects the treatment efficacy for specific physiological conditions.

Significance: This work demonstrates that incorporating model based closed-loop testing of CIEDs into their design provides important indications of safety and efficacy under constrained physiological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2019.2947007DOI Listing

Publication Analysis

Top Keywords

computational heart
8
heart model
8
model framework
8
closing loop
4
loop validation
4
validation implantable
4
implantable cardiac
4
cardiac devices
4
devices computational
4
heart
4

Similar Publications

Background: Fetal MRI is increasingly used to investigate fetal lung pathologies, and super-resolution (SR) algorithms could be a powerful clinical tool for this assessment. Our goal was to investigate whether SR reconstructions result in an improved agreement in lung volume measurements determined by different raters, also known as inter-rater reliability.

Materials And Methods: In this single-center retrospective study, fetal lung volumes calculated from both SR reconstructions and the original images were analyzed.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Electrical pulse generator for electroporation induction in myocytes: Compared effects on skeletal and cardiac cells.

Med Eng Phys

October 2025

Departament of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering (DEEB/FEEC), University of Campinas (UNICAMP), Campinas, SP, Brazil; National Laboratory for Study of Cell Calcium (LabNECC), Center for Biomedical Engineering (CEB), UNICAMP, Campinas, SP, Brazil.

High-intensity, external electric fields (HIEF) have been used in research and therapy for abnormal generation/propagation of the cardiac electrical activity (e.g., defibrillation), and for promoting access of membrane-impermeant molecules into the cytosol through electropores.

View Article and Find Full Text PDF

Integrating rule-based NLP and large language models for statin information extraction from clinical notes.

Int J Med Inform

September 2025

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address:

Background: Identifying patient-specific barriers to statin therapy, such as intolerance or deferral, from clinical notes is a major challenge for improving cardiovascular care. Automating this process could enable targeted interventions and improve clinical decision support (CDS).

Objective: To develop and evaluate a novel hybrid artificial intelligence (AI) framework for accurately and efficiently extracting information on statin therapy barriers from large volumes of clinical notes.

View Article and Find Full Text PDF

Severe tricuspid regurgitation (TR) can lead to significant enlargement of the right atrium (RA) and poses unique clinical challenges. We report this case of a 17-year-old boy previously misdiagnosed with Ebstein anomaly who presented with dyspnea and palpitations. Initial examination revealed irregular heart rhythm, distended neck veins, and a significant murmur.

View Article and Find Full Text PDF