98%
921
2 minutes
20
The Highly ABA-Induced 1 (HAI1) protein phosphatase is a central component of drought-related signaling. A screen for HAI1-interacting proteins identified HAI1-Interactor 1 (HIN1), a nuclear protein of unknown function which could be dephosphorylated by HAI1 in vitro. HIN1 colocalization and interaction with serine-arginine rich (SR) splicing factors and appearance of nuclear speckle-localized HIN1 during low water potential (ψ) stress suggested a pre-mRNA splicing-related function. RNA sequencing of Col-0 wild type identified more than 500 introns where moderate severity low ψ altered intron retention (IR) frequency. Surprisingly, nearly 90% of these had increased splicing efficiency (decreased IR) during stress. For one-third of these introns, ectopic HIN1 expression () in unstressed plants mimicked the increased splicing efficiency seen in stress-treated wild type. HIN1 bound to a GAA-repeat, Exonic Splicing Enhancer-like RNA motif enriched in flanking sequence around HIN1-regulated introns. Genes with stress and HIN1-affected splicing efficiency were enriched for abiotic stress and signaling-related functions. The plants had enhanced growth maintenance during low ψ, while mutants had reduced growth, further indicating the role of HIN1 in drought response. HIN1 is annotated as an MYB/SANT domain protein but has limited homology to other MYB/SANT proteins and is not related to known yeast or metazoan RNA-binding proteins or splicing regulators. Together these data identify HIN1 as a plant-specific RNA-binding protein, show a specific effect of drought acclimation to promote splicing efficiency of IR-prone introns, and also discover HAI1-HIN1 interaction and dephosphorylation that connects stress signaling to splicing regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825267 | PMC |
http://dx.doi.org/10.1073/pnas.1906244116 | DOI Listing |
Neurobiol Dis
September 2025
Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China. Electronic address:
The effect of recurrent seizures on the gradual deterioration of the white matter structural network and the potential molecular mechanisms that underlie the baseline and longitudinal changes in network topology in temporal lobe epilepsy (TLE) remain unclear. Therefore, we used diffusion tensor imaging (DTI) scans and neuropsychiatric assessments for 28 patients with unilateral TLE at baseline and follow-up, and for 28 healthy controls (HC). The topological properties of the structural network were calculated using graph theoretical analyses.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.
View Article and Find Full Text PDFbioRxiv
August 2025
University of California Santa Cruz, Molecular Cellular Developmental Biology, Santa Cruz, CA, 95064, USA.
The branch helix is a structure that forms when U2 snRNP engages with introns to initiate spliceosome assembly, and its formation is mutually exclusive with the branchpoint-interacting stem loop (BSL) present in U2 snRNA. While BSL structure impacts splicing with the constrained branchpoint sequence in yeast introns, its influence in the flexible context of human branchpoints is unknown. We employed an orthogonal U2 snRNA and splicing reporter to examine effects of perturbing BSL sequence.
View Article and Find Full Text PDFMol Ther
September 2025
Genomic Medicine Unit, Sanofi; Waltham, MA, 02451. Electronic address:
Myotonic dystrophy type 1 (DM1), characterized by life-threatening muscle weakness, compromised respiration, and often cardiac conduction abnormalities, is the most common form of adult muscular dystrophy it is. DM1 is caused by a CTG repeat expansion in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene resulting in aggregation of DMPK mRNA into insoluble ribonuclear foci which sequester RNA-binding proteins. Redistribution of essential splicing factors causes mis-splicing of factors responsible for muscle differentiation.
View Article and Find Full Text PDFEmerg Microbes Infect
September 2025
Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
High pathogenicity avian influenza virus (HPAIV) poses major threats to both poultry health and public safety. The viral nonstructural protein 1 (NS1) plays a crucial role in counteracting innate immunity. NS1 typically consists of approximately 230 amino acids with two domains: an RNA-binding domain (RBD) and the effector domain (ED).
View Article and Find Full Text PDF