Publications by authors named "Wen-Dar Lin"

Alternative splicing (AS) is a key mechanism of gene regulation, but the full repertoire of proteins involved and the regulatory mechanisms governing this process remain poorly understood. Using TurboID-based proximity labeling coupled with mass spectrometry (PL-MS), we comprehensively mapped the Arabidopsis AS machinery, focusing on the evolutionarily conserved splicing factor ACINUS, its paralog PININ, and the stable interactor SR45. We identified 298 high-confidence components, including both established and novel interactors, providing strong evidence that alternative splicing is coupled to transcription and that multiple RNA processing steps occur simultaneously in plants.

View Article and Find Full Text PDF

Translation is one of the multiple complementary steps that orchestrates gene activity. In contrast to the straightforwardness of transcriptional surveys, genome-wide profiles of the translational landscape of plant cells remain technically challenging and are thus less well explored. Protein-coding genes are expressed at a variable degree of efficiency, resulting in pronounced discordance among the regulatory levels that govern gene activity.

View Article and Find Full Text PDF

Ribosome profiling (Ribo-seq) measures ribosome density along messenger RNA (mRNA) transcripts and is used to estimate the "translational fitness" of a given mRNA in response to environmental or developmental cues with high resolution. Here, we describe a protocol for Ribo-seq in plants adapted for the model plant Arabidopsis thaliana. We describe steps for lysis and nucleolytic digestion and ribosome footprinting.

View Article and Find Full Text PDF

Coilin is a scaffold protein essential for the structure of Cajal bodies, which are nucleolar-associated, nonmembranous organelles that coordinate the assembly of nuclear ribonucleoproteins (RNPs) including spliceosomal snRNPs. To study coilin function in plants, we conducted a genetic suppressor screen using a coilin (coi1) mutant in Arabidopsis thaliana and performed an immunoprecipitation-mass spectrometry analysis on coilin protein. The coi1 mutations modify alternative splicing of a GFP reporter gene, resulting in a hyper-GFP phenotype in young coi1 seedlings relative to the intermediate wild-type level.

View Article and Find Full Text PDF

Distinct phylogeny and substrate specificities suggest that 12 Arabidopsis Ovarian Tumor domain-containing (OTU) deubiquitinases participate in conserved or plant-specific functions. The null mutant displayed a pleiotropic phenotype, including early flowering, mimicking that of mutants harboring defects in subunits (e.g.

View Article and Find Full Text PDF

The establishment of dorsal-ventral (DV) petal asymmetry is accompanied by differential growth of DV petal size, shape, and color differences, which enhance ornamental values. Genes involved in flower symmetry in have been identified as (), but which gene regulatory network (GRN) is associated with to establish DV petal asymmetry is still unknown. To uncover the GRN of DV petal asymmetry, we identified 630 DV differentially expressed genes (DV-DEGs) from the RNA-Seq of dorsal and ventral petals in the wild progenitor, 'ES'.

View Article and Find Full Text PDF

Background: Light switches on the photomorphogenic development of young plant seedlings, allowing young seedlings to acquire photosynthetic capacities and gain survival fitness. Light regulates gene expression at all levels of the central dogma, including alternative splicing (AS) during the photomorphogenic development. However, accurate determination of full-length (FL) splicing variants has been greatly hampered by short-read RNA sequencing technologies.

View Article and Find Full Text PDF

Iron (Fe) is an essential micronutrient which plays pivotal roles as electron donor and catalyst across organisms. In plants, variable, often insufficient Fe supply necessitates mechanisms that constantly attune Fe uptake rates and recalibrate cellular Fe homoeostasis. Here, we show that short-term (0.

View Article and Find Full Text PDF

Plant chloroplast RNA splicing and ribosome maturation (CRM)-domain-containing proteins are capable of binding RNA to facilitate the splicing of group I or II introns in chloroplasts, but their functions in mitochondria are less clear. In the present study, Arabidopsis thaliana CFM6, a protein with a single CRM domain, was expressed in most plant tissues, particularly in flower tissues, and restricted to mitochondria. Mutation of CFM6 causes severe growth defects, including stunted growth, curled leaves, delayed embryogenesis and pollen development.

View Article and Find Full Text PDF

Background: Lignocellulolytic enzymes are essential for agricultural waste disposal and production of renewable bioenergy. Many commercialized cellulase mixtures have been developed, mostly from saprophytic or endophytic fungal species. The cost of complete cellulose digestion is considerable because a wide range of cellulolytic enzymes is needed.

View Article and Find Full Text PDF

We have developed tools and performed pilot experiments to test the hypothesis that an intracellular ion-based signaling pathway, provoked by an extracellular stimulus acting at the cell surface, can influence interphase chromosome dynamics and chromatin-bound proteins in the nucleus. The experimental system employs chromosome-specific fluorescent tags and the genome-encoded fluorescent pH sensor SEpHluorinA227D, which has been targeted to various intracellular membranes and soluble compartments in root cells of . We are using this system and three-dimensional live cell imaging to visualize whether fluorescent-tagged interphase chromosome sites undergo changes in constrained motion concurrently with reductions in membrane-associated pH elicited by extracellular ATP, which is known to trigger a cascade of events in plant cells including changes in calcium ion concentrations, pH, and membrane potential.

View Article and Find Full Text PDF

The Highly ABA-Induced 1 (HAI1) protein phosphatase is a central component of drought-related signaling. A screen for HAI1-interacting proteins identified HAI1-Interactor 1 (HIN1), a nuclear protein of unknown function which could be dephosphorylated by HAI1 in vitro. HIN1 colocalization and interaction with serine-arginine rich (SR) splicing factors and appearance of nuclear speckle-localized HIN1 during low water potential (ψ) stress suggested a pre-mRNA splicing-related function.

View Article and Find Full Text PDF

The clade A protein phosphatase 2C Highly ABA-Induced 1 (HAI1) plays an important role in stress signaling, yet little information is available on HAI1-regulated phosphoproteins. Quantitative phosphoproteomics identified phosphopeptides of increased abundance in in unstressed plants and in plants exposed to low-water potential (drought) stress. The identity and localization of the phosphoproteins as well as enrichment of specific phosphorylation motifs indicated that these phosphorylation sites may be regulated directly by HAI1 or by HAI1-regulated kinases including mitogen-activated protein kinases, sucrose non-fermenting-related kinase 2, or casein kinases.

View Article and Find Full Text PDF

Splicing of precursor messenger RNAs (pre-mRNAs) is an essential step in the expression of most eukaryotic genes. Both constitutive splicing and alternative splicing, which produces multiple messenger RNA (mRNA) isoforms from a single primary transcript, are modulated by reversible protein phosphorylation. Although the plant splicing machinery is known to be a target for phosphorylation, the protein kinases involved remain to be fully defined.

View Article and Find Full Text PDF

Splicing of pre-mRNA involves two consecutive -esterification steps that take place in the spliceosome, a large dynamic ribonucleoprotein complex situated in the nucleus. In addition to core spliceosomal proteins, each catalytic step requires step-specific factors. Although the genome encodes around 430 predicted splicing factors, functional information about these proteins is limited.

View Article and Find Full Text PDF

In a genetic screen for mutants showing modified splicing of an alternatively spliced reporter gene in , we identified mutations in genes encoding the putative U1 small nuclear ribonucleoprotein (snRNP) factors RBM25 and PRP39a. The latter has not yet been studied for its role in pre-messenger RNA (pre-mRNA) splicing in plants. Both proteins contain predicted RNA-binding domains and have been implicated in 5' splice site selection in yeast and metazoan cells.

View Article and Find Full Text PDF

To identify regulators of pre-mRNA splicing in plants, we developed a forward genetic screen based on an alternatively spliced reporter gene in In wild-type plants, three major splice variants issue from the gene but only one represents a translatable mRNA. Compared to wild-type seedlings, which exhibit an intermediate level of expression, mutants identified in the screen feature either a "GFP-weak" or "Hyper-GFP" phenotype depending on the ratio of the three splice variants. GFP-weak mutants, including previously identified and , contain a higher proportion of unspliced transcript or canonically spliced transcript, neither of which is translatable into GFP protein.

View Article and Find Full Text PDF

Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles.

View Article and Find Full Text PDF

Cell fate and differentiation in the Arabidopsis root epidermis are genetically defined but remain plastic to environmental signals such as limited availability of inorganic phosphate (Pi). Root hairs of Pi-deficient plants are more frequent and longer than those of plants grown under Pi-replete conditions. To dissect genes involved in Pi deficiency-induced root hair morphogenesis, we constructed a co-expression network of Pi-responsive genes against a customized database that was assembled from experiments in which differentially expressed genes that encode proteins with validated functions in root hair development were over-represented.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of histone deacetylase HDA5 in regulating gene expression related to flowering in Arabidopsis plants, highlighting its deacetylase activity and interaction with various proteins.
  • HDA5 mutants exhibit delayed flowering due to increased expression of flowering repressor genes FLC and MAF1, suggesting that HDA5 normally represses these genes.
  • Additionally, HDA5 and another deacetylase, HDA6, are shown to co-regulate gene expression through shared developmental pathways and interact as part of a protein complex.
View Article and Find Full Text PDF

Alternative splicing is prevalent in plants, but little is known about its regulation in the context of developmental and signaling pathways. We describe here a new factor that influences pre-messengerRNA (mRNA) splicing and is essential for embryonic development in Arabidopsis thaliana. This factor was retrieved in a genetic screen that identified mutants impaired in expression of an alternatively spliced GFP reporter gene.

View Article and Find Full Text PDF
Article Synopsis
  • Temperature changes significantly affect plant growth by altering gene regulation.
  • Alternative splicing (AS) increases the complexity of gene expression and is particularly relevant in plants' response to heat stress.
  • In the moss Physcomitrella patens, heat shock treatments revealed that nearly 50% of genes undergo AS, with specific splicing patterns indicating a targeted response to elevated temperatures.
View Article and Find Full Text PDF
Article Synopsis
  • Light is crucial for plant growth, affecting gene expression through photoreceptors, but the role of mRNA splicing in this process is not well understood.
  • Researchers used high-throughput mRNA sequencing on the moss Physcomitrella patens and discovered that light promotes various alternative splicing events, especially those tied to photosynthesis and translation, shortly after light exposure.
  • This study suggests that light modulates gene expression through alternative splicing, with specific regulatory elements involved, highlighting the importance of this mechanism in non-vascular plants' development.
View Article and Find Full Text PDF

Translational control plays a vital role in regulating gene expression. To decipher the molecular basis of translational regulation in photomorphogenic Arabidopsis thaliana, we adopted a ribosome profiling method to map the genome-wide positions of translating ribosomes in Arabidopsis etiolated seedlings in the dark and after light exposure. We found that, in Arabidopsis, a translating ribosome protects an ~30-nucleotide region and moves in three-nucleotide periodicity, characteristics also observed in Saccharomyces cerevisiae and mammals.

View Article and Find Full Text PDF

Background: Quantitative information on gene activity at single cell-type resolution is essential for the understanding of how cells work and interact. Root hairs, or trichoblasts, tubular-shaped outgrowths of specialized cells in the epidermis, represent an ideal model for cell fate acquisition and differentiation in plants.

Results: Here, we provide an atlas of gene and protein expression in Arabidopsis root hair cells, generated by paired-end RNA sequencing and LC/MS-MS analysis of protoplasts from plants containing a pEXP7-GFP reporter construct.

View Article and Find Full Text PDF