Establishment of Coamplification at Lower Denaturation Temperature PCR/Fluorescence Melting Curve Analysis for Quantitative Detection of Hepatitis B Virus DNA, Genotype, and Reverse Transcriptase Mutation and Its Application in Diagnosis of Chronic Hepatitis B.

J Mol Diagn

Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Gene Diagnostic Laboratory, Fujian Medical University, Fuzhou, People's Republic of China; Fujian Key Laboratory of Laboratory Medicine, Fuzhou, People's Republic of Chi

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dynamic and real-time hepatitis B virus (HBV) DNA, genotype, and reverse transcriptase mutation analysis plays an important role in diagnosing and monitoring chronic hepatitis B (CHB) and in assessing the therapeutic response. We established a highly sensitive coamplification at lower denaturation temperature PCR (COLD-PCR) coupled with probe-based fluorescence melting curve analysis (FMCA) for precision diagnosis of CHB patients. The imprecision with %CV and detection limit of HBV DNA detected by COLD-PCR/FMCA were 2.58% to 4.42% and 500 IU/mL, respectively. For mutation, the imprecision and detection limit were 3.35% to 6.49% and 1%, respectively. Compared with Sanger sequencing, the coincidence rates of genotype and mutation were 96.0% and 82.5%, respectively, whereas the inconsistent data resulted from a low proportion (<20%) of mixed genotypes or mixed mutations. The mutation ratio in HBV infection patients was as follows: hepatitis B e antigen (HBeAg)-positive infection (0/0.0%) < HBeAg-negative infection (16/4.5%) < HBeAg-positive hepatitis (30/5.5%) < HBeAg-negative hepatitis (36/6.5%). In patients with entecavir therapy, the proportion of mutation at baseline or week 4 in virologic response (VR) group was <4%, whereas in the partial VR group, it was mostly ≥4%. COLD-PCR/FMCA provides a novel tool with high sensitivity, convenience, and practicability for the simultaneous quantification of HBV DNA, genotype, and mutation. It might be used for distinguishing the different phases of HBV infection and predicting VR of CHB patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmoldx.2019.08.001DOI Listing

Publication Analysis

Top Keywords

coamplification lower
8
lower denaturation
8
denaturation temperature
8
melting curve
8
curve analysis
8
hepatitis virus
8
dna genotype
8
genotype reverse
8
reverse transcriptase
8
transcriptase mutation
8

Similar Publications

Spontaneous and salt stress-induced molecular instability in the progeny of MSH7 deficient Arabidopsis thaliana plants.

DNA Repair (Amst)

January 2025

Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina. Electronic address:

The MSH7 protein is a binding partner of MSH2 forming the MutSγ complex. This complex contributes to the plant mismatch repair (MMR) system by recognizing DNA base-base mismatches. Here, we evaluated the impact of MSH7 on genetic diversity of the tenth generation (G) of wild type and MSH7 deficient Arabidopsis thaliana plants before and after two days exposure to 100 mM NaCl.

View Article and Find Full Text PDF
Article Synopsis
  • Oncogene amplification on extrachromosomal DNA (ecDNA) is linked to treatment resistance and poorer survival in cancer patients, particularly those with glioblastoma, contributing to genetic diversity in tumors.* ! -
  • The study used a new computational model called 'SPECIES' to analyze tumor samples from 94 glioblastoma patients, providing insights into how ecDNA evolves in time and space within tumors.* ! -
  • Findings reveal significant patterns in ecDNA copy number variation, indicating strong positive selection on certain oncogenes and suggesting that ecDNA accumulation occurs before major cell growth phases.* !
View Article and Find Full Text PDF

Small cell lung carcinoma (SCLC) is a highly aggressive malignancy that is typically associated with tobacco exposure and inactivation of RB1 and TP53 genes. Here, we performed detailed clinicopathologic, genomic, and transcriptomic profiling of an atypical subset of SCLC that lacked RB1 and TP53 co-inactivation and arose in never/light smokers. We found that most cases were associated with chromothripsis-massive, localized chromosome shattering-recurrently involving chromosome 11 or 12 and resulting in extrachromosomal amplification of CCND1 or co-amplification of CCND2/CDK4/MDM2, respectively.

View Article and Find Full Text PDF

High-throughput sequencing has become a prominent tool to assess plant-associated microbial diversity. Still, some technical challenges remain in characterising these communities, notably due to plant and fungal DNA co-amplification. Fungal-specific primers, Peptide Nucleic Acid (PNA) clamps, or adjusting PCR conditions are approaches to limit plant DNA contamination.

View Article and Find Full Text PDF

A large part of the soil protist diversity is missed in metabarcoding studies based on 0.25 g of soil environmental DNA (eDNA) and universal primers due to ca. 80% co-amplification of non-target plants, animals and fungi.

View Article and Find Full Text PDF