Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ocean warming and the increased prevalence of coral bleaching events threaten coral reefs. However, the biology of corals during and following bleaching events under field conditions is poorly understood. We examined bleaching and postbleaching recovery in Montipora capitata and Porites compressa corals that either bleached or did not bleach during a 2014 bleaching event at three reef locations in Kāne'ohe Bay, O'ahu, Hawai'i. We measured changes in chlorophylls, tissue biomass, and nutritional plasticity using stable isotopes ( C, N). Coral traits showed significant variation among periods, sites, bleaching conditions, and their interactions. Bleached colonies of both species had lower chlorophyll and total biomass, and while M. capitata chlorophyll and biomass recovered 3 months later, P. compressa chlorophyll recovery was location dependent and total biomass of previously bleached colonies remained low. Biomass energy reserves were not affected by bleaching, instead M. capitata proteins and P. compressa biomass energy and lipids declined over time and P. compressa lipids were site specific during bleaching recovery. Stable isotope analyses did not indicate increased heterotrophic nutrition in bleached colonies of either species, during or after thermal stress. Instead, mass balance calculations revealed that variations in C values reflect biomass compositional change (i.e., protein : lipid : carbohydrate ratios). Observed N values reflected spatiotemporal variability in nitrogen sources in both species and bleaching effects on symbiont nitrogen demand in P. compressa. These results highlight the dynamic responses of corals to natural bleaching and recovery and identify the need to consider the influence of biomass composition in the interpretation of isotopic values in corals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774332PMC
http://dx.doi.org/10.1002/lno.11166DOI Listing

Publication Analysis

Top Keywords

bleaching recovery
12
bleached colonies
12
bleaching
10
corals bleaching
8
bleaching events
8
biomass
8
colonies species
8
total biomass
8
biomass energy
8
corals
5

Similar Publications

Sea surface temperature of the Red Sea has increased by up to 0.45 °C per decade over the last 30 years, and coral bleaching events are becoming more frequent. A reef bleaching event was observed in October 2020, whereby some parts of the Red Sea experienced more than 12 °C-weeks.

View Article and Find Full Text PDF

Subcutaneous (SC) injection is the primary alternative to oral administration for therapeutic proteins and peptides. However, bioavailability and absorption rate are often variable and difficult to predict. Therefore, there is a need for new biorelevant and predictive SC in vitro methods.

View Article and Find Full Text PDF

Coral reefs are threatened worldwide from unprecedented increases in ocean temperatures, resulting in corals gradually living closer to their maximum thermal threshold. With ocean temperatures expected to warm up to 3 °C by 2100, understanding the effects of chronic elevated baseline temperature is important in determining the thermal physiological limits of corals and developing realistic restoration strategies to ensure the future of coral reefs. Here, we tested the effects of 26 weeks (i.

View Article and Find Full Text PDF

Sulfite (HSO) and hypochlorous acid (HClO) serve as essential food additives and key raw materials in bleaching agents. However, excessive consumption of these compounds may disrupt cellular redox homeostasis, leading to a series of adverse physical effects. Therefore, the development of reliable analytical methods to detect HSO and HClO levels in food products is of significant importance.

View Article and Find Full Text PDF

Fluorescence recovery after photobleaching (FRAP) is broadly used to investigate the dynamics of molecules in cells and tissues, notably to quantify diffusion coefficients. FRAP is based on the spatiotemporal imaging of fluorescent molecules after an initial bleaching of fluorescence in a region of the sample. Although a large number of methods have been developed to infer kinetic parameters from experiments, it is still a challenge to fully characterize molecular dynamics from noisy experiments in which diffusion is coupled to other molecular processes or in which the initial bleaching profile is not perfectly controlled.

View Article and Find Full Text PDF