Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pharmacogenomics (PGx) clinical decision support integrated into the electronic health record (EHR) has the potential to provide relevant knowledge to clinicians to enable individualized care. However, past experience implementing PGx clinical decision support into multiple EHR platforms has identified important clinical, procedural, and technical challenges. Commercial EHRs have been widely criticized for the lack of readiness to implement precision medicine. Herein, we share our experiences and lessons learned implementing new EHR functionality charting PGx phenotypes in a unique repository, genomic indicators, instead of using the problem or allergy list. The Gen-Ind has additional features including a brief description of the clinical impact, a hyperlink to the original laboratory report, and links to additional educational resources. The automatic generation of genomic indicators from interfaced PGx test results facilitates implementation and long-term maintenance of PGx data in the EHR and can be used as criteria for synchronous and asynchronous CDS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6913212PMC
http://dx.doi.org/10.1093/jamia/ocz177DOI Listing

Publication Analysis

Top Keywords

genomic indicators
12
electronic health
8
health record
8
pgx clinical
8
clinical decision
8
decision support
8
pgx
5
integrating pharmacogenomics
4
pharmacogenomics electronic
4
record implementing
4

Similar Publications

Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.

View Article and Find Full Text PDF

Distinct codon usage signatures reflecting evolutionary and pathogenic adaptation in the Acinetobacter baumannii complex.

Eur J Clin Microbiol Infect Dis

September 2025

School of Bioengineering and Biosciences, Department of Biochemistry, Lovely Professional University, Punjab, 144411, India.

Purpose: This study investigates codon usage and amino acid usage bias in the genus Acinetobacter to uncover the evolutionary forces shaping these patterns and their implications for pathogenicity and biotechnology.

Methods: Codon usage patterns were examined in representative genomes of the genus Acinetobacter using standard codon bias indices, including GC content, relative synonymous codon usage (RSCU), effective number of codons (ENC), and codon adaptation index (CAI). Neutrality and parity plots were employed to evaluate the relative influence of mutational pressure and natural selection on codon preferences.

View Article and Find Full Text PDF

Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.

Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.

View Article and Find Full Text PDF

Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.

Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.

View Article and Find Full Text PDF

The first complete plastid genome of the critically endangered species Valeriana trinervis was sequenced, assembled and compared with other published Valeriana plastomes. In this study, we assembled the plastid genome of the critically endangered, endemic species Valeriana trinervis (= Centranthus trinervis) and compare it with all published plastomes of Valeriana. We found not only differences in the inverted repeats boundaries, in the type and abundance of repeats, but also similarities in codon usage and microsatellite numbers.

View Article and Find Full Text PDF