Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, the impacts of microRNAs (miRNAs) have been identified in epilepsy (EP), this study was designed to assess the role of miR-183 in hippocampal neuron injury in EP. Rat EP models were established by injected with lithium-pilocarpine. The pathological observation of rats' hippocampus sections was conducted. Expression of miR-183, Foxp1, Jak1, Stat1, and Stat3 in rats' hippocampal tissues was determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. The proliferation ability and the apoptosis of the rats' neurons were measured. Furthermore, the target relation between miR-183 and Foxp1 was determined by bioinformatics analysis and dual-luciferase gene reporter assay. The levels of miR-183, Jak1, Stat1, and Stat3 were elevated, and the expression of Foxp1 was declined in EP rats' hippocampal tissues. Inhibited miR-183 could up-regulate Foxp1, inhibited miR-183 together with up-regulated Foxp1 could repress hippocampal neuron injury, promote neuron proliferation, suppress neuron apoptosis, and inactivate the Jak/Stat signaling pathway, resulting in an attenuation of EP progression. Moreover, down-regulated Foxp1 could reverse the attenuation of EP progression which was contributed by inhibited miR-183. Our study implies that inhibited miR-183 could up-regulate Foxp1, resulting in an inactivation of the Jak/Stat signaling pathway and promotion of neuron proliferation, as well as inhibition of apoptosis of hippocampal neurons in EP rats, by which the hippocampal neuron injury and EP progression could be repressed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816400PMC
http://dx.doi.org/10.1080/15384101.2019.1671717DOI Listing

Publication Analysis

Top Keywords

hippocampal neuron
16
neuron injury
16
inhibited mir-183
16
jak/stat signaling
12
signaling pathway
12
foxp1
8
mir-183
8
mir-183 foxp1
8
jak1 stat1
8
stat1 stat3
8

Similar Publications

Dysregulated spine morphology is a common feature in the pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.

View Article and Find Full Text PDF

In the hippocampal formation, cholinergic modulation from the medial septum/diagonal band of Broca (MSDB) is known to correlate with the speed of an animal's movements at sub-second timescales and also supports spatial memory formation. Yet, the extent to which sub-second cholinergic dynamics, if at all, align with transient behavioral and cognitive states supporting the encoding of novel spatial information remains unknown. In this study, we used fiber photometry to record the temporal dynamics in the population activity of septo-hippocampal cholinergic neurons at sub-second resolution during a hippocampus-dependent object location memory task using ChAT-Cre mice of both sexes.

View Article and Find Full Text PDF

Regulation of neurogenesis and neuronal migration by Rrm2 and Timp3 following seizures.

Neurobiol Dis

September 2025

Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA. Electronic address:

Temporal lobe epilepsy is associated with aberrant neurogenesis and ectopic migration of adult-born granule cells (abGCs), yet the molecular mechanisms driving these changes remain poorly defined. Using a pilocarpine-induced mouse model of temporal lobe epilepsy and chemogenetic silencing of abGCs via Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), we previously demonstrated that abGC inhibition reduces both ectopic migration and seizure susceptibility. To identify underlying molecular regulators, we performed RNA sequencing of FACS-isolated abGCs and identified Rrm2 and Timp3 as top candidate genes modulated by seizure activity and neuronal silencing.

View Article and Find Full Text PDF

Advances in intravital imaging of adult neurogenesis in mice.

Stem Cell Reports

September 2025

Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland. Electronic address:

The lifelong addition of stem-cell-derived neurons into distinct areas of the mammalian brain, such as the olfactory bulb and hippocampal dentate gyrus, provides structural and functional plasticity to neural circuits. To understand the dynamic processes underlying adult neurogenesis, from dividing stem/progenitor cells to integrating neurons, and to probe how new neurons shape brain function, intravital imaging turned out to be a powerful tool. Here, we review recent advances in the field of adult neurogenesis achieved by using in vivo imaging approaches in mice and discuss future directions of imaging-based experiments that will further our understanding of adult neurogenesis.

View Article and Find Full Text PDF

Background: Staphylococcus epidermidis (SE) is a predominant hospital-acquired bacterium leading to late-onset sepsis in preterm infants. Recent findings have suggested that postnatal S. epidermidis infection is associated with short-term neurodevelopmental consequences.

View Article and Find Full Text PDF